skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Toward clean suspended CVD graphene

Abstract

The application of suspended graphene as electron transparent supporting media in electron microscopy, vacuum electronics, and micromechanical devices requires the least destructive and maximally clean transfer from their original growth substrate to the target of interest. Here, we use thermally evaporated anthracene films as the sacrificial layer for graphene transfer onto an arbitrary substrate. We show that clean suspended graphene can be achieved via desorbing the anthracene layer at temperatures in the 100 °C to 150 °C range, followed by two sequential annealing steps for the final cleaning, using a Pt catalyst and activated carbon. The cleanliness of the suspended graphene membranes was analyzed employing the high surface sensitivity of low energy scanning electron microscopy and X-ray photoelectron spectroscopy. A quantitative comparison with two other commonly used transfer methods revealed the superiority of the anthracene approach to obtain a larger area of clean, suspended CVD graphene. Lastly, our graphene transfer method based on anthracene paves the way for integrating cleaner graphene in various types of complex devices, including the ones that are heat and humidity sensitive.

Authors:
 [1];  [2];  [1];  [1];  [3];  [1];  [4];  [1]
  1. National Institute of Standards and Technology (NIST), Gaithersburg, MD (United States)
  2. (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Univ. of Maryland, College Park, MD (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1344290
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
RSC Advances
Additional Journal Information:
Journal Volume: 6; Journal Issue: 87; Journal ID: ISSN 2046-2069
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Yulaev, Alexander, Univ. of Maryland, College Park, MD, Cheng, Guangjun, Hight Walker, Angela R., Vlassiouk, Ivan V., Myers, Alline, Leite, Marina S., and Kolmakov, Andrei. Toward clean suspended CVD graphene. United States: N. p., 2016. Web. doi:10.1039/C6RA17360H.
Yulaev, Alexander, Univ. of Maryland, College Park, MD, Cheng, Guangjun, Hight Walker, Angela R., Vlassiouk, Ivan V., Myers, Alline, Leite, Marina S., & Kolmakov, Andrei. Toward clean suspended CVD graphene. United States. doi:10.1039/C6RA17360H.
Yulaev, Alexander, Univ. of Maryland, College Park, MD, Cheng, Guangjun, Hight Walker, Angela R., Vlassiouk, Ivan V., Myers, Alline, Leite, Marina S., and Kolmakov, Andrei. Fri . "Toward clean suspended CVD graphene". United States. doi:10.1039/C6RA17360H. https://www.osti.gov/servlets/purl/1344290.
@article{osti_1344290,
title = {Toward clean suspended CVD graphene},
author = {Yulaev, Alexander and Univ. of Maryland, College Park, MD and Cheng, Guangjun and Hight Walker, Angela R. and Vlassiouk, Ivan V. and Myers, Alline and Leite, Marina S. and Kolmakov, Andrei},
abstractNote = {The application of suspended graphene as electron transparent supporting media in electron microscopy, vacuum electronics, and micromechanical devices requires the least destructive and maximally clean transfer from their original growth substrate to the target of interest. Here, we use thermally evaporated anthracene films as the sacrificial layer for graphene transfer onto an arbitrary substrate. We show that clean suspended graphene can be achieved via desorbing the anthracene layer at temperatures in the 100 °C to 150 °C range, followed by two sequential annealing steps for the final cleaning, using a Pt catalyst and activated carbon. The cleanliness of the suspended graphene membranes was analyzed employing the high surface sensitivity of low energy scanning electron microscopy and X-ray photoelectron spectroscopy. A quantitative comparison with two other commonly used transfer methods revealed the superiority of the anthracene approach to obtain a larger area of clean, suspended CVD graphene. Lastly, our graphene transfer method based on anthracene paves the way for integrating cleaner graphene in various types of complex devices, including the ones that are heat and humidity sensitive.},
doi = {10.1039/C6RA17360H},
journal = {RSC Advances},
number = 87,
volume = 6,
place = {United States},
year = {2016},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity
journal, January 2016


Migration and Localization of Metal Atoms on Strained Graphene
journal, November 2010

  • Cretu, Ovidiu; Krasheninnikov, Arkady V.; Rodríguez-Manzo, Julio A.
  • Physical Review Letters, Vol. 105, Issue 19
  • DOI: 10.1103/PhysRevLett.105.196102

Drop-Casted Self-Assembling Graphene Oxide Membranes for Scanning Electron Microscopy on Wet and Dense Gaseous Samples
journal, November 2011

  • Krueger, Mark; Berg, Shannon; Stone, D’Arcy
  • ACS Nano, Vol. 5, Issue 12
  • DOI: 10.1021/nn204287g

Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper
journal, March 2011

  • Li, Xuesong; Magnuson, Carl W.; Venugopal, Archana
  • Journal of the American Chemical Society, Vol. 133, Issue 9, p. 2816-2819
  • DOI: 10.1021/ja109793s

Graphene Annealing: How Clean Can It Be?
journal, December 2011

  • Lin, Yung-Chang; Lu, Chun-Chieh; Yeh, Chao-Huei
  • Nano Letters, Vol. 12, Issue 1, p. 414-419
  • DOI: 10.1021/nl203733r

Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene
journal, July 2011

  • Vlassiouk, Ivan; Regmi, Murari; Fulvio, Pasquale
  • ACS Nano, Vol. 5, Issue 7, p. 6069-6076
  • DOI: 10.1021/nn201978y

A new examination of secondary electron yield data
journal, January 2005

  • Lin, Yinghong; Joy, David C.
  • Surface and Interface Analysis, Vol. 37, Issue 11
  • DOI: 10.1002/sia.2107

Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO 2 -Supported Graphene Devices
journal, February 2011

  • Cheng, Zengguang; Zhou, Qiaoyu; Wang, Chenxuan
  • Nano Letters, Vol. 11, Issue 2
  • DOI: 10.1021/nl103977d

Surface analysis and angular distributions in x-ray photoelectron spectroscopy
journal, January 1974

  • Fadley, C. S.; Baird, R. J.; Siekhaus, W.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 4, Issue 2
  • DOI: 10.1016/0368-2048(74)90001-2

A direct transfer of layer-area graphene
journal, March 2010

  • Regan, William; Alem, Nasim; Alemán, Benjamín
  • Applied Physics Letters, Vol. 96, Issue 11
  • DOI: 10.1063/1.3337091

The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO 2
journal, September 2011

  • Pirkle, A.; Chan, J.; Venugopal, A.
  • Applied Physics Letters, Vol. 99, Issue 12
  • DOI: 10.1063/1.3643444

Graphene transfer: key for applications
journal, January 2012

  • Kang, Junmo; Shin, Dolly; Bae, Sukang
  • Nanoscale, Vol. 4, Issue 18
  • DOI: 10.1039/c2nr31317k

Very low energy electron microscopy of graphene flakes: VERY LOW ENERGY ELECTRON MICROSCOPY OF GRAPHENE FLAKES
journal, May 2013

  • MikmekovÁ, E.; Bouyanfif, H.; Lejeune, M.
  • Journal of Microscopy, Vol. 251, Issue 2
  • DOI: 10.1111/jmi.12049

Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software
journal, May 2011

  • Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal
  • Scanning, Vol. 33, Issue 3
  • DOI: 10.1002/sca.20262

Graphene transfer with reduced residue
journal, September 2013


Vapor Pressures and Enthalpies of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Derivatives
journal, May 1998

  • Oja, Vahur; Suuberg, Eric M.
  • Journal of Chemical & Engineering Data, Vol. 43, Issue 3
  • DOI: 10.1021/je970222l

Ultraclean freestanding graphene by platinum-metal catalysis
journal, March 2013

  • Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 31, Issue 2
  • DOI: 10.1116/1.4793746

Photoelectron spectroscopy of wet and gaseous samples through graphene membranes
journal, January 2014

  • Kraus, Jürgen; Reichelt, Robert; Günther, Sebastian
  • Nanoscale, Vol. 6, Issue 23
  • DOI: 10.1039/C4NR03561E

Grains and grain boundaries in single-layer graphene atomic patchwork quilts
journal, January 2011

  • Huang, Pinshane Y.; Ruiz-Vargas, Carlos S.; van der Zande, Arend M.
  • Nature, Vol. 469, Issue 7330, p. 389-392
  • DOI: 10.1038/nature09718

Metal-catalyzed etching of graphene governed by metal–carbon interactions: A comparison of Fe and Cu
journal, January 2015


Detection of individual gas molecules adsorbed on graphene
journal, July 2007

  • Schedin, F.; Geim, A. K.; Morozov, S. V.
  • Nature Materials, Vol. 6, Issue 9, p. 652-655
  • DOI: 10.1038/nmat1967

Large-scale pattern growth of graphene films for stretchable transparent electrodes
journal, January 2009


Effect of airborne contaminants on the wettability of supported graphene and graphite
journal, July 2013

  • Li, Zhiting; Wang, Yongjin; Kozbial, Andrew
  • Nature Materials, Vol. 12, Issue 10
  • DOI: 10.1038/nmat3709

High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells
journal, April 2012


Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates
journal, October 2008

  • Reina, Alfonso; Son, Hyungbin; Jiao, Liying
  • The Journal of Physical Chemistry C, Vol. 112, Issue 46
  • DOI: 10.1021/jp807380s

Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum
journal, January 2012

  • Gao, Libo; Ren, Wencai; Xu, Huilong
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1702

Low-energy electron transmission imaging of clusters on free-standing graphene
journal, September 2012

  • Longchamp, Jean-Nicolas; Latychevskaia, Tatiana; Escher, Conrad
  • Applied Physics Letters, Vol. 101, Issue 11
  • DOI: 10.1063/1.4752717

Atomic Structure of Graphene on SiO2
journal, June 2007

  • Ishigami, Masa; Chen, J. H.; Cullen, W. G.
  • Nano Letters, Vol. 7, Issue 6, p. 1643-1648
  • DOI: 10.1021/nl070613a

Boron nitride substrates for high-quality graphene electronics
journal, August 2010

  • Dean, C. R.; Young, A. F.; Meric, I.
  • Nature Nanotechnology, Vol. 5, Issue 10, p. 722-726
  • DOI: 10.1038/nnano.2010.172

Annealing free, clean graphene transfer using alternative polymer scaffolds
journal, January 2015


Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils
journal, May 2009


Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production
journal, January 2015

  • Zaretski, Aliaksandr V.; Lipomi, Darren J.
  • Nanoscale, Vol. 7, Issue 22
  • DOI: 10.1039/C5NR01777G

‘Bubble-Free’ Electrochemical Delamination of CVD Graphene Films
journal, September 2014

  • Cherian, Christie Thomas; Giustiniano, Francesco; Martin-Fernandez, Iñigo
  • Small, Vol. 11, Issue 2
  • DOI: 10.1002/smll.201402024

Interaction of Metals with Suspended Graphene Observed by Transmission Electron Microscopy
journal, March 2012

  • Zan, Recep; Bangert, Ursel; Ramasse, Quentin
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 7
  • DOI: 10.1021/jz201653g

Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates
journal, August 2011

  • Suk, Ji Won; Kitt, Alexander; Magnuson, Carl W.
  • ACS Nano, Vol. 5, Issue 9
  • DOI: 10.1021/nn201207c

Dry-cleaning of graphene
journal, April 2014

  • Algara-Siller, Gerardo; Lehtinen, Ossi; Turchanin, Andrey
  • Applied Physics Letters, Vol. 104, Issue 15
  • DOI: 10.1063/1.4871997

Electromechanical Resonators from Graphene Sheets
journal, January 2007


A facile process for soak-and-peel delamination of CVD graphene from substrates using water
journal, January 2014

  • Gupta, Priti; Dongare, Pratiksha D.; Grover, Sameer
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03882

Roll-to-roll production of 30-inch graphene films for transparent electrodes
journal, June 2010

  • Bae, Sukang; Kim, Hyeongkeun; Lee, Youngbin
  • Nature Nanotechnology, Vol. 5, Issue 8, p. 574-578
  • DOI: 10.1038/nnano.2010.132

Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes
journal, December 2009

  • Li, Xuesong; Zhu, Yanwu; Cai, Weiwei
  • Nano Letters, Vol. 9, Issue 12
  • DOI: 10.1021/nl902623y

Simulation of electron spectra for surface analysis (SESSA): a novel software tool for quantitative Auger-electron spectroscopy and X-ray photoelectron spectroscopy
journal, January 2005

  • Smekal, Werner; Werner, Wolfgang S. M.; Powell, Cedric J.
  • Surface and Interface Analysis, Vol. 37, Issue 11
  • DOI: 10.1002/sia.2097

    Works referencing / citing this record:

    Cleaning graphene: Comparing heat treatments in air and in vacuum: Cleaning graphene
    journal, July 2017

    • Tripathi, Mukesh; Mittelberger, Andreas; Mustonen, Kimmo
    • physica status solidi (RRL) - Rapid Research Letters, Vol. 11, Issue 8
    • DOI: 10.1002/pssr.201700124