DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hot-spot mix in ignition-scale implosions on the NIF [Hot-spot mix in ignition-scale implosions on the National Ignition Facility (NIF)]

Abstract

Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraum x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amountmore » of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less

Authors:
 [1];  [1];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [3];  [2];  [2] more »;  [2];  [2];  [4];  [5];  [5];  [2];  [2];  [3];  [6];  [1];  [2];  [1];  [7];  [8];  [9];  [2];  [2] « less
  1. Univ. of Rochester, Rochester, NY (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Prism Computational Sciences, Madison, WI (United States)
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); General Atomics, San Diego, CA (United States)
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  6. Univ. of Nevada, Reno, NV (United States)
  7. General Atomics, San Diego, CA (United States)
  8. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  9. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1343041
Report Number(s):
LLNL-JRNL-520491
Journal ID: ISSN 1070-664X
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 19; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 70 PLASMA PHYSICS AND FUSION

Citation Formats

Regan, S. P., Epstein, R., Hammel, B. A., Suter, L. J., Ralph, J., Scott, H., Barrios, M. A., Bradley, D. K., Callahan, D. A., Cerjan, C., Collins, G. W., Dixit, S. N., Doeppner, T., Edwards, M. J., Farley, D. R., Glenn, S., Glenzer, S. H., Golovkin, I. E., Haan, S. W., Hamza, A., Hicks, D. G., Izumi, N., Kilkenny, J. D., Kline, J. L., Kyrala, G. A., Landen, O. L., Ma, T., MacFarlane, J. J., Mancini, R. C., McCrory, R. L., Meezan, N. B., Meyerhofer, D. D., Nikroo, A., Peterson, K. J., Sangster, T. C., Springer, P., and Town, R. P. J. Hot-spot mix in ignition-scale implosions on the NIF [Hot-spot mix in ignition-scale implosions on the National Ignition Facility (NIF)]. United States: N. p., 2012. Web. doi:10.1063/1.3694057.
Regan, S. P., Epstein, R., Hammel, B. A., Suter, L. J., Ralph, J., Scott, H., Barrios, M. A., Bradley, D. K., Callahan, D. A., Cerjan, C., Collins, G. W., Dixit, S. N., Doeppner, T., Edwards, M. J., Farley, D. R., Glenn, S., Glenzer, S. H., Golovkin, I. E., Haan, S. W., Hamza, A., Hicks, D. G., Izumi, N., Kilkenny, J. D., Kline, J. L., Kyrala, G. A., Landen, O. L., Ma, T., MacFarlane, J. J., Mancini, R. C., McCrory, R. L., Meezan, N. B., Meyerhofer, D. D., Nikroo, A., Peterson, K. J., Sangster, T. C., Springer, P., & Town, R. P. J. Hot-spot mix in ignition-scale implosions on the NIF [Hot-spot mix in ignition-scale implosions on the National Ignition Facility (NIF)]. United States. https://doi.org/10.1063/1.3694057
Regan, S. P., Epstein, R., Hammel, B. A., Suter, L. J., Ralph, J., Scott, H., Barrios, M. A., Bradley, D. K., Callahan, D. A., Cerjan, C., Collins, G. W., Dixit, S. N., Doeppner, T., Edwards, M. J., Farley, D. R., Glenn, S., Glenzer, S. H., Golovkin, I. E., Haan, S. W., Hamza, A., Hicks, D. G., Izumi, N., Kilkenny, J. D., Kline, J. L., Kyrala, G. A., Landen, O. L., Ma, T., MacFarlane, J. J., Mancini, R. C., McCrory, R. L., Meezan, N. B., Meyerhofer, D. D., Nikroo, A., Peterson, K. J., Sangster, T. C., Springer, P., and Town, R. P. J. Fri . "Hot-spot mix in ignition-scale implosions on the NIF [Hot-spot mix in ignition-scale implosions on the National Ignition Facility (NIF)]". United States. https://doi.org/10.1063/1.3694057. https://www.osti.gov/servlets/purl/1343041.
@article{osti_1343041,
title = {Hot-spot mix in ignition-scale implosions on the NIF [Hot-spot mix in ignition-scale implosions on the National Ignition Facility (NIF)]},
author = {Regan, S. P. and Epstein, R. and Hammel, B. A. and Suter, L. J. and Ralph, J. and Scott, H. and Barrios, M. A. and Bradley, D. K. and Callahan, D. A. and Cerjan, C. and Collins, G. W. and Dixit, S. N. and Doeppner, T. and Edwards, M. J. and Farley, D. R. and Glenn, S. and Glenzer, S. H. and Golovkin, I. E. and Haan, S. W. and Hamza, A. and Hicks, D. G. and Izumi, N. and Kilkenny, J. D. and Kline, J. L. and Kyrala, G. A. and Landen, O. L. and Ma, T. and MacFarlane, J. J. and Mancini, R. C. and McCrory, R. L. and Meezan, N. B. and Meyerhofer, D. D. and Nikroo, A. and Peterson, K. J. and Sangster, T. C. and Springer, P. and Town, R. P. J.},
abstractNote = {Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraum x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.},
doi = {10.1063/1.3694057},
journal = {Physics of Plasmas},
number = 5,
volume = 19,
place = {United States},
year = {Fri Mar 30 00:00:00 EDT 2012},
month = {Fri Mar 30 00:00:00 EDT 2012}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 99 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility
journal, May 2010

  • Michel, P.; Glenzer, S. H.; Divol, L.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3325733

Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies
journal, January 2010


Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited)
journal, October 2010

  • Kyrala, G. A.; Dixit, S.; Glenzer, S.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3481028

Plastic ablator ignition capsule design for the National Ignition Facility
journal, May 2010

  • Clark, Daniel S.; Haan, Steven W.; Hammel, Bruce A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3403293

Beta energy driven uniform deuterium–tritium ice layer in reactor‐size cryogenic inertial fusion targets
journal, May 1988

  • Martin, A. J.; Simms, R. J.; Jacobs, R. B.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 6, Issue 3
  • DOI: 10.1116/1.575234

Symmetry tuning for ignition capsules via the symcap technique
journal, May 2011

  • Kyrala, G. A.; Kline, J. L.; Dixit, S.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3574504

Capsule implosion optimization during the indirect-drive National Ignition Campaign
journal, May 2011

  • Landen, O. L.; Edwards, J.; Haan, S. W.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592170

The experimental plan for cryogenic layered target implosions on the National Ignition Facility—The inertial confinement approach to fusion
journal, May 2011

  • Edwards, M. J.; Lindl, J. D.; Spears, B. K.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592173

High-mode Rayleigh-Taylor growth in NIF ignition capsules
journal, June 2010


The National Ignition Facility
journal, December 2004


Two-dimensional capsule-hohlraum designs for the National Ignition Facility
journal, August 2001

  • Bradley, P. A.; Wilson, D. C.
  • Physics of Plasmas, Vol. 8, Issue 8
  • DOI: 10.1063/1.1385173

The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

Demonstration of the shock-timing technique for ignition targets on the National Ignition Facility
journal, May 2009

  • Boehly, T. R.; Munro, D.; Celliers, P. M.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3078422

SPECT3D – A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output
journal, May 2007


Principles of Plasma Spectroscopy
book, January 1997


Calculational aspects of the Stark line broadening of multielectron ions in plasmas
journal, February 1991


The National Ignition Facility
conference, May 2004

  • Miller, George H.
  • Lasers and Applications in Science and Engineering, SPIE Proceedings
  • DOI: 10.1117/12.538462

Plastic ablator ignition capsule design for the National Ignition Facility
journal, August 2010


Principles of Plasma Spectroscopy
journal, August 1998


Works referencing / citing this record:

Effects of preheat and mix on the fuel adiabat of an imploding capsule
journal, December 2016

  • Cheng, B.; Kwan, T. J. T.; Wang, Y. M.
  • Physics of Plasmas, Vol. 23, Issue 12
  • DOI: 10.1063/1.4971814

Integrated diagnostic analysis of inertial confinement fusion capsule performance
journal, May 2013

  • Cerjan, Charles; Springer, Paul T.; Sepke, Scott M.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4802196

High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions
journal, May 2017

  • Haines, Brian M.; Aldrich, C. H.; Campbell, J. M.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4981222

Review of the National Ignition Campaign 2009-2012
journal, February 2014

  • Lindl, John; Landen, Otto; Edwards, John
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865400

X-ray spectrometer throughput model for (selected) flat Bragg crystal spectrometers on laser plasma facilities
journal, October 2018

  • Thorn, D. B.; Coppari, F.; Döppner, T.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5039423

Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research
journal, February 2018

  • Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 45, Issue 3
  • DOI: 10.1088/1361-6471/aa8693

Understanding turbulence in compressing plasma as a quasi-EOS
journal, June 2019

  • Davidovits, Seth; Fisch, Nathaniel J.
  • Physics of Plasmas, Vol. 26, Issue 6
  • DOI: 10.1063/1.5098790

Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments
journal, July 2016

  • Haines, Brian M.; Grim, Gary P.; Fincke, James R.
  • Physics of Plasmas, Vol. 23, Issue 7
  • DOI: 10.1063/1.4959117

The National Direct-Drive Inertial Confinement Fusion Program
journal, December 2018


The role of hot spot mix in the low-foot and high-foot implosions on the NIF
journal, May 2017

  • Ma, T.; Patel, P. K.; Izumi, N.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983625

Viscous dissipation in two-dimensional compression of turbulence
journal, August 2019

  • Davidovits, Seth; Fisch, Nathaniel J.
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5111961

Improving ICF implosion performance with alternative capsule supports
journal, May 2017

  • Weber, C. R.; Casey, D. T.; Clark, D. S.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4977536

Bulk hydrodynamic stability and turbulent saturation in compressing hot spots
journal, April 2018

  • Davidovits, Seth; Fisch, Nathaniel J.
  • Physics of Plasmas, Vol. 25, Issue 4
  • DOI: 10.1063/1.5026413

Mixed mass of classical Rayleigh-Taylor mixing at arbitrary density ratios
journal, January 2020

  • Zhang, You-sheng; Ruan, Yu-cang; Xie, Han-song
  • Physics of Fluids, Vol. 32, Issue 1
  • DOI: 10.1063/1.5131495

Synthetic nuclear diagnostics for inferring plasma properties of inertial confinement fusion implosions
journal, December 2018

  • Crilly, A. J.; Appelbe, B. D.; McGlinchey, K.
  • Physics of Plasmas, Vol. 25, Issue 12
  • DOI: 10.1063/1.5027462

Hard x-ray transmission curved crystal spectrometers (10–100 keV) for laser fusion experiments at the ShenGuang-III laser facility
journal, January 2016

  • Yu, Ming-hai; Hu, Guang-yue; An, Ning
  • High Power Laser Science and Engineering, Vol. 4
  • DOI: 10.1017/hpl.2015.36

Observation of persistent species temperature separation in inertial confinement fusion mixtures
journal, January 2020


Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility
journal, September 2014

  • Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.
  • Physics of Plasmas, Vol. 21, Issue 9
  • DOI: 10.1063/1.4894215

Ignition and pusher adiabat
journal, June 2018

  • Cheng, B.; Kwan, T. J. T.; Wang, Y. M.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 7
  • DOI: 10.1088/1361-6587/aac611

Experimental investigation of bright spots in broadband, gated x-ray images of ignition-scale implosions on the National Ignition Facility
journal, July 2013

  • Barrios, M. A.; Regan, S. P.; Suter, L. J.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816034

Inertial-confinement fusion with lasers
journal, May 2016

  • Betti, R.; Hurricane, O. A.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3736

Implosion dynamics measurements at the National Ignition Facility
journal, December 2012

  • Hicks, D. G.; Meezan, N. B.; Dewald, E. L.
  • Physics of Plasmas, Vol. 19, Issue 12
  • DOI: 10.1063/1.4769268

Asymptotic behavior of the mixed mass in Rayleigh–Taylor and Richtmyer–Meshkov instability induced flows
journal, May 2016

  • Zhou, Ye; Cabot, William H.; Thornber, Ben
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4951018

Computational study of instability and fill tube mitigation strategies for double shell implosions
journal, October 2019

  • Haines, Brian M.; Daughton, W. S.; Loomis, E. N.
  • Physics of Plasmas, Vol. 26, Issue 10
  • DOI: 10.1063/1.5115031

Observation of persistent species temperature separation in inertial confinement fusion mixtures
journal, January 2020