DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal powder absorptivity: Modeling and experiment

Abstract

Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

Authors:
 [1];  [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1342030
Alternate Identifier(s):
OSTI ID: 1286297
Report Number(s):
LLNL-JRNL-682544
Journal ID: ISSN 0003-6935; APOPAI
Grant/Contract Number:  
AC52-07NA27344; 15-ERD-037
Resource Type:
Accepted Manuscript
Journal Name:
Applied Optics
Additional Journal Information:
Journal Volume: 55; Journal Issue: 23; Journal ID: ISSN 0003-6935
Publisher:
Optical Society of America (OSA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 42 ENGINEERING; inhomogeneous optical media; ray trajectories in inhomogeneous media; artificially engineered materials

Citation Formats

Boley, C. D., Mitchell, S. C., Rubenchik, A. M., and Wu, S. S. Q. Metal powder absorptivity: Modeling and experiment. United States: N. p., 2016. Web. doi:10.1364/AO.55.006496.
Boley, C. D., Mitchell, S. C., Rubenchik, A. M., & Wu, S. S. Q. Metal powder absorptivity: Modeling and experiment. United States. https://doi.org/10.1364/AO.55.006496
Boley, C. D., Mitchell, S. C., Rubenchik, A. M., and Wu, S. S. Q. Wed . "Metal powder absorptivity: Modeling and experiment". United States. https://doi.org/10.1364/AO.55.006496. https://www.osti.gov/servlets/purl/1342030.
@article{osti_1342030,
title = {Metal powder absorptivity: Modeling and experiment},
author = {Boley, C. D. and Mitchell, S. C. and Rubenchik, A. M. and Wu, S. S. Q.},
abstractNote = {Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.},
doi = {10.1364/AO.55.006496},
journal = {Applied Optics},
number = 23,
volume = 55,
place = {United States},
year = {Wed Aug 10 00:00:00 EDT 2016},
month = {Wed Aug 10 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 88 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Normal-directional and normal-hemispherical reflectances of micron- and submicron-sized powder beds at 633 and 790nm
journal, June 2006

  • Gusarov, A. V.; Bentefour, E. H.; Rombouts, M.
  • Journal of Applied Physics, Vol. 99, Issue 11
  • DOI: 10.1063/1.2205358

Absorption of laser irradiation in a porous powder layer
journal, November 2007

  • McVey, R. W.; Melnychuk, R. M.; Todd, J. A.
  • Journal of Laser Applications, Vol. 19, Issue 4
  • DOI: 10.2351/1.2756854

Absorptance of powder materials suitable for laser sintering
journal, September 2000

  • Tolochko, Nikolay K.; Khlopkov, Yurii V.; Mozzharov, Sergei E.
  • Rapid Prototyping Journal, Vol. 6, Issue 3, p. 155-161
  • DOI: 10.1108/13552540010337029

Mechanisms of selective laser sintering and heat transfer in Ti powder
journal, December 2003

  • Tolochko, Nikolay K.; Arshinov, Maxim K.; Gusarov, Andrey V.
  • Rapid Prototyping Journal, Vol. 9, Issue 5
  • DOI: 10.1108/13552540310502211

Temperature-Dependent Reflectance of Plated Metals and Composite Materials Under Laser Irradiation
journal, July 2000

  • Freeman, Robert K.; Rigby, Fred A.; Morley, Nicholas
  • Journal of Thermophysics and Heat Transfer, Vol. 14, Issue 3
  • DOI: 10.2514/2.6546

Modeling the interaction of laser radiation with powder bed at selective laser melting
journal, January 2010


Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges
journal, December 2015

  • King, W. E.; Anderson, A. T.; Ferencz, R. M.
  • Applied Physics Reviews, Vol. 2, Issue 4
  • DOI: 10.1063/1.4937809

Viewpoint: metallurgical aspects of powder bed metal additive manufacturing
journal, November 2015


Modelling of radiation transfer in metallic powders at laser treatment
journal, July 2005


Calculation of laser absorption by metal powders in additive manufacturing
journal, January 2015

  • Boley, C. D.; Khairallah, S. A.; Rubenchik, A. M.
  • Applied Optics, Vol. 54, Issue 9
  • DOI: 10.1364/AO.54.002477

Temperature-dependent 780-nm laser absorption by engineering grade aluminum, titanium, and steel alloy surfaces
journal, July 2014

  • Rubenchik, Alexander M.; Wu, Sheldon S. Q.; Kanz, V. Keith
  • Optical Engineering, Vol. 53, Issue 12
  • DOI: 10.1117/1.OE.53.12.122506

Direct measurements of temperature-dependent laser absorptivity of metal powders
journal, January 2015


Temperature-dependent reflectance of plated metals and composite materials under laser irradiation
conference, August 1998

  • Freeman, Robert; Rigby, Fred; Morley, Nicholas
  • 29th AIAA, Plasmadynamics and Lasers Conference
  • DOI: 10.2514/6.1998-2482

Works referencing / citing this record:

Machine‐Learning‐Based Monitoring of Laser Powder Bed Fusion
journal, August 2018

  • Yuan, Bodi; Guss, Gabriel M.; Wilson, Aaron C.
  • Advanced Materials Technologies, Vol. 3, Issue 12
  • DOI: 10.1002/admt.201800136

The Formation of Humps and Ripples During Selective Laser Melting of 316l Stainless Steel
journal, January 2020


The Effect of Powder Characteristics on Build Quality of High-Purity Tungsten Produced via Laser Powder Bed Fusion (LPBF)
journal, January 2020

  • Field, A. C.; Carter, L. N.; Adkins, N. J. E.
  • Metallurgical and Materials Transactions A, Vol. 51, Issue 3
  • DOI: 10.1007/s11661-019-05601-6

Resonance excitation of surface capillary waves to enhance material removal for laser material processing
journal, May 2019


A review of computational modeling in powder-based additive manufacturing for metallic part qualification
journal, November 2018

  • Liu, Jingfu; Jalalahmadi, Behrooz; Guo, Y. B.
  • Rapid Prototyping Journal, Vol. 24, Issue 8
  • DOI: 10.1108/rpj-04-2017-0058

Energy Coupling Mechanisms and Scaling Behavior Associated with Laser Powder Bed Fusion Additive Manufacturing
journal, April 2019

  • Ye, Jianchao; Khairallah, Saad A.; Rubenchik, Alexander M.
  • Advanced Engineering Materials, Vol. 21, Issue 7
  • DOI: 10.1002/adem.201900185

Thermo-mechanical simulations of selective laser melting for AlSi10Mg alloy to predict the part-scale deformations
journal, September 2019

  • Soylemez, Emrecan; Koç, Ebubekir; Coşkun, Mert
  • Progress in Additive Manufacturing, Vol. 4, Issue 4
  • DOI: 10.1007/s40964-019-00096-4