skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties

Abstract

In this paper, the nanoscale through-film and lateral photo-response and conductivity of large-grained methylammonium lead iodide (MAPbI3) thin films are studied. In perovskite solar cells (PSC), these films result in efficiencies >17%. The grain boundaries (GBs) show high resistance at the top surface of the film, and act as an impediment to photocurrent collection. However, lower resistance pathways between grains exist below the top surface of the film, indicating that there exists a depth-dependent resistance of GBs (RGB(z)). Furthermore, lateral conductivity measurements indicate that RGB(z) exhibits GB-to-GB heterogeneity. These results indicate that increased photocurrent collection along GBs is not a prerequisite for high-efficiency PSCs. Rather, better control of depth-dependent GB electrical properties, and an improvement in the homogeneity of the GB-to-GB electrical properties, must be managed to enable further improvements in PSC efficiency. Finally, these results refute the implicit assumption seen in the literature that the electrical properties of GBs, as measured at the top surface of the perovskite film, necessarily reflect the electrical properties of GBs within the thickness of the film.

Authors:
 [1];  [2];  [3];  [1];  [3];  [4];  [2];  [1]
  1. National Inst. of Standards and Technology (NIST), Boulder, CO (United States). Material Measurement Lab., Applied Chemicals and Materials Division
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States). Chemistry and Nanoscience Center
  3. National Inst. of Standards and Technology (NIST), Boulder, CO (United States). Physical Measurement Lab., Applied Physics Division
  4. National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1339245
Report Number(s):
NREL/JA-5900-67690
Journal ID: ISSN 1754-5692; EESNBY
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 9; Journal Issue: 12; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; nanoscale; methylammonium lead iodide thin films

Citation Formats

MacDonald, Gordon A., Yang, Mengjin, Berweger, Samuel, Killgore, Jason P., Kabos, Pavel, Berry, Joseph J., Zhu, Kai, and DelRio, Frank W. Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties. United States: N. p., 2016. Web. doi:10.1039/C6EE01889K.
MacDonald, Gordon A., Yang, Mengjin, Berweger, Samuel, Killgore, Jason P., Kabos, Pavel, Berry, Joseph J., Zhu, Kai, & DelRio, Frank W. Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties. United States. doi:10.1039/C6EE01889K.
MacDonald, Gordon A., Yang, Mengjin, Berweger, Samuel, Killgore, Jason P., Kabos, Pavel, Berry, Joseph J., Zhu, Kai, and DelRio, Frank W. Fri . "Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties". United States. doi:10.1039/C6EE01889K. https://www.osti.gov/servlets/purl/1339245.
@article{osti_1339245,
title = {Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties},
author = {MacDonald, Gordon A. and Yang, Mengjin and Berweger, Samuel and Killgore, Jason P. and Kabos, Pavel and Berry, Joseph J. and Zhu, Kai and DelRio, Frank W.},
abstractNote = {In this paper, the nanoscale through-film and lateral photo-response and conductivity of large-grained methylammonium lead iodide (MAPbI3) thin films are studied. In perovskite solar cells (PSC), these films result in efficiencies >17%. The grain boundaries (GBs) show high resistance at the top surface of the film, and act as an impediment to photocurrent collection. However, lower resistance pathways between grains exist below the top surface of the film, indicating that there exists a depth-dependent resistance of GBs (RGB(z)). Furthermore, lateral conductivity measurements indicate that RGB(z) exhibits GB-to-GB heterogeneity. These results indicate that increased photocurrent collection along GBs is not a prerequisite for high-efficiency PSCs. Rather, better control of depth-dependent GB electrical properties, and an improvement in the homogeneity of the GB-to-GB electrical properties, must be managed to enable further improvements in PSC efficiency. Finally, these results refute the implicit assumption seen in the literature that the electrical properties of GBs, as measured at the top surface of the perovskite film, necessarily reflect the electrical properties of GBs within the thickness of the film.},
doi = {10.1039/C6EE01889K},
journal = {Energy & Environmental Science},
number = 12,
volume = 9,
place = {United States},
year = {2016},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reversible Hydration of CH 3 NH 3 PbI 3 in Films, Single Crystals, and Solar Cells
journal, April 2015


Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells
journal, May 2016

  • Ke, Weijun; Xiao, Chuanxiao; Wang, Changlei
  • Advanced Materials, Vol. 28, Issue 26
  • DOI: 10.1002/adma.201600594

Benefit of Grain Boundaries in Organic–Inorganic Halide Planar Perovskite Solar Cells
journal, February 2015

  • Yun, Jae S.; Ho-Baillie, Anita; Huang, Shujuan
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 5
  • DOI: 10.1021/acs.jpclett.5b00182

Grain-Boundary-Enhanced Carrier Collection in CdTe Solar Cells
journal, April 2014


The emergence of perovskite solar cells
journal, July 2014

  • Green, Martin A.; Ho-Baillie, Anita; Snaith, Henry J.
  • Nature Photonics, Vol. 8, Issue 7, p. 506-514
  • DOI: 10.1038/nphoton.2014.134

Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films
journal, August 2016


Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Square-Centimeter Solution-Processed Planar CH 3 NH 3 PbI 3 Perovskite Solar Cells with Efficiency Exceeding 15%
journal, September 2015

  • Yang, Mengjin; Zhou, Yuanyuan; Zeng, Yining
  • Advanced Materials, Vol. 27, Issue 41
  • DOI: 10.1002/adma.201502586

Impact of microstructure on local carrier lifetime in perovskite solar cells
journal, April 2015


Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films
journal, January 2016

  • Shao, Yuchuan; Fang, Yanjun; Li, Tao
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C6EE00413J

Reduction of grain boundary recombination in polycrystalline silicon solar cells
journal, April 1977

  • DiStefano, T. H.; Cuomo, J. J.
  • Applied Physics Letters, Vol. 30, Issue 7
  • DOI: 10.1063/1.89396

Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells
journal, December 2014

  • Shao, Yuchuan; Xiao, Zhengguo; Bi, Cheng
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6784

Electrical testing of gold nanostructures by conducting atomic force microscopy
journal, January 2000

  • Bietsch, Alexander; Schneider, M. Alexander; Welland, Mark E.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 18, Issue 3
  • DOI: 10.1116/1.591353

Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells
journal, January 2016

  • Zhu, Weidong; Bao, Chunxiong; Wang, Yangrunqian
  • Dalton Transactions, Vol. 45, Issue 18
  • DOI: 10.1039/C6DT00900J

Theoretical and experimental investigations of nano-Schottky contacts
journal, July 2016

  • Rezeq, Moh'd; Eledlebi, Khouloud; Ismail, Mohammed
  • Journal of Applied Physics, Vol. 120, Issue 4
  • DOI: 10.1063/1.4959090

Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells
journal, November 2014

  • Zhao, Yixin; Zhu, Kai
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 23
  • DOI: 10.1021/jz501983v

Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells
journal, June 2014

  • Chen, Qi; Zhou, Huanping; Song, Tze-Bin
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501838y

Contact Mechanics
journal, October 1986

  • Johnson, K. L.; Keer, L. M.
  • Journal of Tribology, Vol. 108, Issue 4
  • DOI: 10.1115/1.3261297

Perovskite-based solar cells: impact of morphology and device architecture on device performance
journal, January 2015

  • Salim, Teddy; Sun, Shuangyong; Abe, Yuichiro
  • Journal of Materials Chemistry A, Vol. 3, Issue 17
  • DOI: 10.1039/C4TA05226A

Perovskite Solar Cells: From Materials to Devices
journal, October 2014


Grain-boundary recombination in Cu(In,Ga)Se2 solar cells
journal, December 2005

  • Gloeckler, Markus; Sites, James R.; Metzger, Wyatt K.
  • Journal of Applied Physics, Vol. 98, Issue 11
  • DOI: 10.1063/1.2133906

Humidity-Induced Grain Boundaries in MAPbI 3 Perovskite Films
journal, March 2016

  • Li, Dan; Bretschneider, Simon A.; Bergmann, Victor W.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 12
  • DOI: 10.1021/acs.jpcc.6b00335

Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells
journal, April 2014

  • Frost, Jarvist M.; Butler, Keith T.; Brivio, Federico
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl500390f

The light and shade of perovskite solar cells
journal, August 2014


Microscopic Investigation of Grain Boundaries in Organolead Halide Perovskite Solar Cells
journal, December 2015

  • Li, Jiang-Jun; Ma, Jing-Yuan; Ge, Qian-Qing
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 51
  • DOI: 10.1021/acsami.5b09801

Transformation of the Excited State and Photovoltaic Efficiency of CH 3 NH 3 PbI 3 Perovskite upon Controlled Exposure to Humidified Air
journal, January 2015

  • Christians, Jeffrey A.; Miranda Herrera, Pierre A.; Kamat, Prashant V.
  • Journal of the American Chemical Society, Vol. 137, Issue 4
  • DOI: 10.1021/ja511132a