skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties

Abstract

In this paper, the nanoscale through-film and lateral photo-response and conductivity of large-grained methylammonium lead iodide (MAPbI3) thin films are studied. In perovskite solar cells (PSC), these films result in efficiencies >17%. The grain boundaries (GBs) show high resistance at the top surface of the film, and act as an impediment to photocurrent collection. However, lower resistance pathways between grains exist below the top surface of the film, indicating that there exists a depth-dependent resistance of GBs (RGB(z)). Furthermore, lateral conductivity measurements indicate that RGB(z) exhibits GB-to-GB heterogeneity. These results indicate that increased photocurrent collection along GBs is not a prerequisite for high-efficiency PSCs. Rather, better control of depth-dependent GB electrical properties, and an improvement in the homogeneity of the GB-to-GB electrical properties, must be managed to enable further improvements in PSC efficiency. Finally, these results refute the implicit assumption seen in the literature that the electrical properties of GBs, as measured at the top surface of the perovskite film, necessarily reflect the electrical properties of GBs within the thickness of the film.

Authors:
 [1];  [2];  [3];  [1];  [3];  [4];  [2];  [1]
  1. National Inst. of Standards and Technology (NIST), Boulder, CO (United States). Material Measurement Lab., Applied Chemicals and Materials Division
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States). Chemistry and Nanoscience Center
  3. National Inst. of Standards and Technology (NIST), Boulder, CO (United States). Physical Measurement Lab., Applied Physics Division
  4. National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1339245
Report Number(s):
NREL/JA-5900-67690
Journal ID: ISSN 1754-5692; EESNBY
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 9; Journal Issue: 12; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; nanoscale; methylammonium lead iodide thin films

Citation Formats

MacDonald, Gordon A., Yang, Mengjin, Berweger, Samuel, Killgore, Jason P., Kabos, Pavel, Berry, Joseph J., Zhu, Kai, and DelRio, Frank W. Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties. United States: N. p., 2016. Web. doi:10.1039/C6EE01889K.
MacDonald, Gordon A., Yang, Mengjin, Berweger, Samuel, Killgore, Jason P., Kabos, Pavel, Berry, Joseph J., Zhu, Kai, & DelRio, Frank W. Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties. United States. doi:10.1039/C6EE01889K.
MacDonald, Gordon A., Yang, Mengjin, Berweger, Samuel, Killgore, Jason P., Kabos, Pavel, Berry, Joseph J., Zhu, Kai, and DelRio, Frank W. Fri . "Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties". United States. doi:10.1039/C6EE01889K. https://www.osti.gov/servlets/purl/1339245.
@article{osti_1339245,
title = {Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties},
author = {MacDonald, Gordon A. and Yang, Mengjin and Berweger, Samuel and Killgore, Jason P. and Kabos, Pavel and Berry, Joseph J. and Zhu, Kai and DelRio, Frank W.},
abstractNote = {In this paper, the nanoscale through-film and lateral photo-response and conductivity of large-grained methylammonium lead iodide (MAPbI3) thin films are studied. In perovskite solar cells (PSC), these films result in efficiencies >17%. The grain boundaries (GBs) show high resistance at the top surface of the film, and act as an impediment to photocurrent collection. However, lower resistance pathways between grains exist below the top surface of the film, indicating that there exists a depth-dependent resistance of GBs (RGB(z)). Furthermore, lateral conductivity measurements indicate that RGB(z) exhibits GB-to-GB heterogeneity. These results indicate that increased photocurrent collection along GBs is not a prerequisite for high-efficiency PSCs. Rather, better control of depth-dependent GB electrical properties, and an improvement in the homogeneity of the GB-to-GB electrical properties, must be managed to enable further improvements in PSC efficiency. Finally, these results refute the implicit assumption seen in the literature that the electrical properties of GBs, as measured at the top surface of the perovskite film, necessarily reflect the electrical properties of GBs within the thickness of the film.},
doi = {10.1039/C6EE01889K},
journal = {Energy & Environmental Science},
number = 12,
volume = 9,
place = {United States},
year = {2016},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reversible Hydration of CH 3 NH 3 PbI 3 in Films, Single Crystals, and Solar Cells
journal, April 2015


Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells
journal, May 2016

  • Ke, Weijun; Xiao, Chuanxiao; Wang, Changlei
  • Advanced Materials, Vol. 28, Issue 26
  • DOI: 10.1002/adma.201600594

Benefit of Grain Boundaries in Organic–Inorganic Halide Planar Perovskite Solar Cells
journal, February 2015

  • Yun, Jae S.; Ho-Baillie, Anita; Huang, Shujuan
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 5
  • DOI: 10.1021/acs.jpclett.5b00182

Grain-Boundary-Enhanced Carrier Collection in CdTe Solar Cells
journal, April 2014


The emergence of perovskite solar cells
journal, July 2014

  • Green, Martin A.; Ho-Baillie, Anita; Snaith, Henry J.
  • Nature Photonics, Vol. 8, Issue 7, p. 506-514
  • DOI: 10.1038/nphoton.2014.134

Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films
journal, August 2016


Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Square-Centimeter Solution-Processed Planar CH 3 NH 3 PbI 3 Perovskite Solar Cells with Efficiency Exceeding 15%
journal, September 2015

  • Yang, Mengjin; Zhou, Yuanyuan; Zeng, Yining
  • Advanced Materials, Vol. 27, Issue 41
  • DOI: 10.1002/adma.201502586

Impact of microstructure on local carrier lifetime in perovskite solar cells
journal, April 2015


Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films
journal, January 2016

  • Shao, Yuchuan; Fang, Yanjun; Li, Tao
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C6EE00413J

Reduction of grain boundary recombination in polycrystalline silicon solar cells
journal, April 1977

  • DiStefano, T. H.; Cuomo, J. J.
  • Applied Physics Letters, Vol. 30, Issue 7
  • DOI: 10.1063/1.89396

Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells
journal, December 2014

  • Shao, Yuchuan; Xiao, Zhengguo; Bi, Cheng
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6784

Electrical testing of gold nanostructures by conducting atomic force microscopy
journal, January 2000

  • Bietsch, Alexander; Schneider, M. Alexander; Welland, Mark E.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 18, Issue 3
  • DOI: 10.1116/1.591353

Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells
journal, January 2016

  • Zhu, Weidong; Bao, Chunxiong; Wang, Yangrunqian
  • Dalton Transactions, Vol. 45, Issue 18
  • DOI: 10.1039/C6DT00900J

Theoretical and experimental investigations of nano-Schottky contacts
journal, July 2016

  • Rezeq, Moh'd; Eledlebi, Khouloud; Ismail, Mohammed
  • Journal of Applied Physics, Vol. 120, Issue 4
  • DOI: 10.1063/1.4959090

Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells
journal, November 2014

  • Zhao, Yixin; Zhu, Kai
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 23
  • DOI: 10.1021/jz501983v

Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells
journal, June 2014

  • Chen, Qi; Zhou, Huanping; Song, Tze-Bin
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501838y

Contact Mechanics
journal, October 1986

  • Johnson, K. L.; Keer, L. M.
  • Journal of Tribology, Vol. 108, Issue 4
  • DOI: 10.1115/1.3261297

Perovskite-based solar cells: impact of morphology and device architecture on device performance
journal, January 2015

  • Salim, Teddy; Sun, Shuangyong; Abe, Yuichiro
  • Journal of Materials Chemistry A, Vol. 3, Issue 17
  • DOI: 10.1039/C4TA05226A

Perovskite Solar Cells: From Materials to Devices
journal, October 2014


Grain-boundary recombination in Cu(In,Ga)Se2 solar cells
journal, December 2005

  • Gloeckler, Markus; Sites, James R.; Metzger, Wyatt K.
  • Journal of Applied Physics, Vol. 98, Issue 11
  • DOI: 10.1063/1.2133906

Humidity-Induced Grain Boundaries in MAPbI 3 Perovskite Films
journal, March 2016

  • Li, Dan; Bretschneider, Simon A.; Bergmann, Victor W.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 12
  • DOI: 10.1021/acs.jpcc.6b00335

Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells
journal, April 2014

  • Frost, Jarvist M.; Butler, Keith T.; Brivio, Federico
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl500390f

The light and shade of perovskite solar cells
journal, August 2014


Microscopic Investigation of Grain Boundaries in Organolead Halide Perovskite Solar Cells
journal, December 2015

  • Li, Jiang-Jun; Ma, Jing-Yuan; Ge, Qian-Qing
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 51
  • DOI: 10.1021/acsami.5b09801

Transformation of the Excited State and Photovoltaic Efficiency of CH 3 NH 3 PbI 3 Perovskite upon Controlled Exposure to Humidified Air
journal, January 2015

  • Christians, Jeffrey A.; Miranda Herrera, Pierre A.; Kamat, Prashant V.
  • Journal of the American Chemical Society, Vol. 137, Issue 4
  • DOI: 10.1021/ja511132a

Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%
journal, August 2012

  • Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00591

    Works referencing / citing this record:

    Oriented Grains with Preferred Low-Angle Grain Boundaries in Halide Perovskite Films by Pressure-Induced Crystallization
    journal, December 2017

    • Kim, Wanjung; Jung, Myung Sun; Lee, Seonhee
    • Advanced Energy Materials, Vol. 8, Issue 10
    • DOI: 10.1002/aenm.201702369

    Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance
    journal, February 2018

    • Saliba, Michael; Correa-Baena, Juan-Pablo; Grätzel, Michael
    • Angewandte Chemie International Edition, Vol. 57, Issue 10
    • DOI: 10.1002/anie.201703226

    Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells
    journal, January 2018

    • Petrus, Michiel L.; Schlipf, Johannes; Li, Cheng
    • Advanced Energy Materials, Vol. 8, Issue 2
    • DOI: 10.1002/aenm.201703396

    Impact of Structural Dynamics on the Optical Properties of Methylammonium Lead Iodide Perovskites
    journal, June 2017

    • Panzer, Fabian; Li, Cheng; Meier, Tobias
    • Advanced Energy Materials, Vol. 7, Issue 16
    • DOI: 10.1002/aenm.201700286

    Perowskit-Solarzellen: atomare Ebene, Schichtqualität und Leistungsfähigkeit der Zellen
    journal, February 2018

    • Saliba, Michael; Correa-Baena, Juan-Pablo; Grätzel, Michael
    • Angewandte Chemie, Vol. 130, Issue 10
    • DOI: 10.1002/ange.201703226

    Tin( iv ) dopant removal through anti-solvent engineering enabling tin based perovskite solar cells with high charge carrier mobilities
    journal, January 2019

    • Bandara, R. M. I.; Jayawardena, K. D. G. I.; Adeyemo, S. O.
    • Journal of Materials Chemistry C, Vol. 7, Issue 27
    • DOI: 10.1039/c9tc02003a

    Identifying the charge generation dynamics in Cs + -based triple cation mixed perovskite solar cells
    journal, January 2017

    • Salado, Manuel; Kokal, Ramesh K.; Calio, Laura
    • Physical Chemistry Chemical Physics, Vol. 19, Issue 34
    • DOI: 10.1039/c7cp03760k

    Imaging material functionality through three-dimensional nanoscale tracking of energy flow
    journal, October 2019


    Edge Effect on the Population of Free Carriers and Excitons in Single‐Crystal CH 3 NH 3 PbBr 3 Perovskite Nanomaterials
    journal, May 2019

    • Zhang, Zhen‐Yu; Yu, Kuai; Wang, Guo‐Ping
    • Advanced Electronic Materials, Vol. 5, Issue 7
    • DOI: 10.1002/aelm.201900216

    Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells
    journal, July 2018

    • Li, Bowei; Ferguson, Victoria; Silva, S. Ravi P.
    • Advanced Materials Interfaces, Vol. 5, Issue 22
    • DOI: 10.1002/admi.201800326

    Approaching the Shockley–Queisser limit for fill factors in lead–tin mixed perovskite photovoltaics
    journal, January 2020

    • Jayawardena, K. D. G. I.; Bandara, R. M. I.; Monti, M.
    • Journal of Materials Chemistry A, Vol. 8, Issue 2
    • DOI: 10.1039/c9ta10543c

    Imaging Metal Halide Perovskites Material and Properties at the Nanoscale
    journal, December 2019


    Interface Engineering in Tin Perovskite Solar Cells
    journal, October 2019

    • Gao, Weiyin; Li, Peizhou; Chen, Jinbo
    • Advanced Materials Interfaces, Vol. 6, Issue 24
    • DOI: 10.1002/admi.201901322