skip to main content

DOE PAGESDOE PAGES

Title: Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS

Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change of anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Lastly, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.
Authors:
 [1] ;  [2] ;  [3] ;  [2] ;  [4] ;  [5] ;  [4] ;  [1] ;  [6]
  1. Peking Univ., Beijing (China)
  2. Chinese Academy of Sciences (CAS), Beijing (China)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Chinese Academy of Sciences (CAS), Shanghai (China)
  5. Chinese Academy of Sciences (CAS), Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)
  6. Peking Univ., Beijing (China); Chinese Academy of Sciences (CAS), Shanghai (China)
Publication Date:
Report Number(s):
LA-UR-16-22905
Journal ID: ISSN 2045-2322
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE Laboratory Directed Research and Development (LDRD) Program
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Material Science
OSTI Identifier:
1338807