skip to main content

DOE PAGESDOE PAGES

Title: Impact of linker engineering on the catalytic activity of metal–organic frameworks containing Pd(II)–bipyridine complexes

A series of mixed-linker bipyridyl metal–organic framework (MOF)-supported palladium(II) catalysts were used to elucidate the electronic and steric effects of linker substitution on the activity of these catalysts in the context of Suzuki–Miyaura cross-coupling reactions. m-6,6'-Me 2bpy-MOF-PdCl 2 exhibited 110- and 496-fold enhancements in activity compared to nonfunctionalized m-bpy-MOF-PdCl 2 and m-4,4'-Me 2bpy-MOF-PdCl 2, respectively. Furthermore, this result clearly demonstrates that the stereoelectronic properties of metal-binding linker units are critical to the activity of single-site organometallic catalysts in MOFs and highlights the importance of linker engineering in the design and development of efficient MOF catalysts.
Authors:
 [1] ;  [2] ;  [1] ;  [1] ;  [2] ;  [2] ;  [1]
  1. Iowa State Univ., Ames, IA (United States); Ames Lab., Ames, IA (United States)
  2. Iowa State Univ., Ames, IA (United States)
Publication Date:
Report Number(s):
IS-J-9087
Journal ID: ISSN 2155-5435
Grant/Contract Number:
AC02-07CH11358
Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 6; Journal Issue: 9; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; bipyridyl linker; heterogeneous catalysis; isoreticular metal−organic frameworks; single-site catalyst; structure−activity relationship; Suzuki−Miyaura cross-coupling
OSTI Identifier:
1337683