skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Efficient Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation: Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation

Abstract

Here, we report newly developed iridium catalysts with electron-donating imidazoline moieties as ligands for the hydrogenation of CO2 to formate in aqueous solution. Interestingly, these new complexes promote CO2 hydrogenation much more effectively than their imidazole analogues and exhibit a turnover frequency (TOF) of 1290 h–1 for the bisimidazoline complex compared to that of 20 h–1 for the bisimidazole complex at 1 MPa and 50 °C. Additionally, the hydrogenation proceeds smoothly even under atmospheric pressure at room temperature. The TOF of 43 h–1 for the bisimidazoline complex is comparable to that of a dinuclear complex (70 h–1, highest TOF reported) [Nat. Chem. 2012, 4, 383], which incorporates proton-responsive ligands with pendent-OH groups in the second coordination sphere. The catalytic activity of the complex with an N-methylated imidazoline moiety is much the same as that of the corresponding pyridylimidazoline analogue. Our result and the UV/Vis titrations of the imidazoline complexes indicate that the high activity is not attributable to the deprotonation of NH on the imidazoline under the reaction conditions.

Authors:
 [1];  [1];  [1];  [1];  [2];  [3];  [3];  [1]
  1. National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)
  2. Dalian Univ. of Technology, Panjin (China). School of Petroleum and Chemical Engineering
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1335387
Report Number(s):
BNL-111790-2016-JA
Journal ID: ISSN 1434-1948; R&D Project: CO026; KC0304030
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
European Journal of Inorganic Chemistry
Additional Journal Information:
Journal Volume: 2015; Journal Issue: 34; Journal ID: ISSN 1434-1948
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; homogeneous catalysis; Ir complex; CO2 hydrogenation

Citation Formats

Xu, Shaoan, Onishi, Naoya, Tsurusaki, Akihiro, Manaka, Yuichi, Wang, Wan-Hui, Muckerman, James T., Fujita, Etsuko, and Himeda, Yuichiro. Efficient Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation: Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation. United States: N. p., 2015. Web. doi:10.1002/ejic.201501030.
Xu, Shaoan, Onishi, Naoya, Tsurusaki, Akihiro, Manaka, Yuichi, Wang, Wan-Hui, Muckerman, James T., Fujita, Etsuko, & Himeda, Yuichiro. Efficient Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation: Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation. United States. doi:10.1002/ejic.201501030.
Xu, Shaoan, Onishi, Naoya, Tsurusaki, Akihiro, Manaka, Yuichi, Wang, Wan-Hui, Muckerman, James T., Fujita, Etsuko, and Himeda, Yuichiro. Mon . "Efficient Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation: Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation". United States. doi:10.1002/ejic.201501030. https://www.osti.gov/servlets/purl/1335387.
@article{osti_1335387,
title = {Efficient Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation: Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation},
author = {Xu, Shaoan and Onishi, Naoya and Tsurusaki, Akihiro and Manaka, Yuichi and Wang, Wan-Hui and Muckerman, James T. and Fujita, Etsuko and Himeda, Yuichiro},
abstractNote = {Here, we report newly developed iridium catalysts with electron-donating imidazoline moieties as ligands for the hydrogenation of CO2 to formate in aqueous solution. Interestingly, these new complexes promote CO2 hydrogenation much more effectively than their imidazole analogues and exhibit a turnover frequency (TOF) of 1290 h–1 for the bisimidazoline complex compared to that of 20 h–1 for the bisimidazole complex at 1 MPa and 50 °C. Additionally, the hydrogenation proceeds smoothly even under atmospheric pressure at room temperature. The TOF of 43 h–1 for the bisimidazoline complex is comparable to that of a dinuclear complex (70 h–1, highest TOF reported) [Nat. Chem. 2012, 4, 383], which incorporates proton-responsive ligands with pendent-OH groups in the second coordination sphere. The catalytic activity of the complex with an N-methylated imidazoline moiety is much the same as that of the corresponding pyridylimidazoline analogue. Our result and the UV/Vis titrations of the imidazoline complexes indicate that the high activity is not attributable to the deprotonation of NH on the imidazoline under the reaction conditions.},
doi = {10.1002/ejic.201501030},
journal = {European Journal of Inorganic Chemistry},
number = 34,
volume = 2015,
place = {United States},
year = {2015},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage
journal, January 2015

  • Zhu, Qi-Long; Xu, Qiang
  • Energy & Environmental Science, Vol. 8, Issue 2
  • DOI: 10.1039/C4EE03690E

Use of carbon dioxide in energy storage
journal, September 1978

  • Williams, Richard; Crandall, Richard S.; Bloom, Allen
  • Applied Physics Letters, Vol. 33, Issue 5
  • DOI: 10.1063/1.90403

Preface for Small-Molecule Activation: Carbon-Containing Fuels
journal, May 2015


Well-Defined Iron Catalyst for Improved Hydrogenation of Carbon Dioxide and Bicarbonate
journal, December 2012

  • Ziebart, Carolin; Federsel, Christopher; Anbarasan, Pazhamalai
  • Journal of the American Chemical Society, Vol. 134, Issue 51
  • DOI: 10.1021/ja307924a

Synthesis and Reactivity of Iron Complexes with a New Pyrazine-Based Pincer Ligand, and Application in Catalytic Low-Pressure Hydrogenation of Carbon Dioxide
journal, April 2015


Iron catalyzed CO 2 hydrogenation to formate enhanced by Lewis acid co-catalysts
journal, January 2015

  • Zhang, Yuanyuan; MacIntosh, Alex D.; Wong, Janice L.
  • Chemical Science, Vol. 6, Issue 7
  • DOI: 10.1039/C5SC01467K

Iron-Catalyzed Hydrogenation of Bicarbonates and Carbon Dioxide to Formates
journal, January 2015


Hydricity of an Fe–H Species and Catalytic CO 2 Hydrogenation
journal, December 2014

  • Fong, Henry; Peters, Jonas C.
  • Inorganic Chemistry, Vol. 54, Issue 11
  • DOI: 10.1021/ic502508p

Homogeneous catalytic hydrogenation of supercritical carbon dioxide
journal, March 1994

  • Jessop, Philip G.; Ikariya, Takao; Noyori, Ryoji
  • Nature, Vol. 368, Issue 6468
  • DOI: 10.1038/368231a0

A Charge/Discharge Device for Chemical Hydrogen Storage and Generation
journal, September 2011

  • Papp, Gábor; Csorba, Jenő; Laurenczy, Gábor
  • Angewandte Chemie, Vol. 123, Issue 44
  • DOI: 10.1002/ange.201104951

Ruthenium(II)Phosphite Complexes as Catalysts for the Hydrogenation of Carbon Dioxide
journal, February 2013


Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP-Pincer Catalyst
journal, April 2014

  • Filonenko, Georgy A.; van Putten, Robbert; Schulpen, Erik N.
  • ChemCatChem, Vol. 6, Issue 6
  • DOI: 10.1002/cctc.201402119

Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media
journal, June 2014

  • Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5017

Amine-Free Reversible Hydrogen Storage in Formate Salts Catalyzed by Ruthenium Pincer Complex without pH Control or Solvent Change
journal, March 2015

  • Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain
  • ChemSusChem, Vol. 8, Issue 8
  • DOI: 10.1002/cssc.201403458

Catalytic CO 2 Hydrogenation to Formate by a Ruthenium Pincer Complex
journal, September 2013

  • Huff, Chelsea A.; Sanford, Melanie S.
  • ACS Catalysis, Vol. 3, Issue 10
  • DOI: 10.1021/cs400609u

Hydrogenation of Carbon Dioxide to Formate Catalyzed by a Copper/1,8-Diazabicyclo[5.4.0]undec-7-ene System
journal, April 2015

  • Watari, Ryo; Kayaki, Yoshihito; Hirano, Shin-ichi
  • Advanced Synthesis & Catalysis, Vol. 357, Issue 7
  • DOI: 10.1002/adsc.201500043

Cp*Co(III) Catalysts with Proton-Responsive Ligands for Carbon Dioxide Hydrogenation in Aqueous Media
journal, October 2013

  • Badiei, Yosra M.; Wang, Wan-Hui; Hull, Jonathan F.
  • Inorganic Chemistry, Vol. 52, Issue 21
  • DOI: 10.1021/ic401707u

A Cobalt Hydride Catalyst for the Hydrogenation of CO 2 : Pathways for Catalysis and Deactivation
journal, September 2014

  • Jeletic, Matthew S.; Helm, Monte L.; Hulley, Elliott B.
  • ACS Catalysis, Vol. 4, Issue 10
  • DOI: 10.1021/cs5009927

Incorporation of Pendant Bases into Rh(diphosphine) 2 Complexes: Synthesis, Thermodynamic Studies, And Catalytic CO 2 Hydrogenation Activity of [Rh(P 2 N 2 ) 2 ] + Complexes
journal, June 2015

  • Lilio, Alyssia M.; Reineke, Mark H.; Moore, Curtis E.
  • Journal of the American Chemical Society, Vol. 137, Issue 25
  • DOI: 10.1021/jacs.5b04291

Direct formation of formic acid from carbon dioxide and dihydrogen using the [{Rh(cod)Cl} 2 ]–Ph 2 P(CH 2 ) 4 PPh 2 catalyst system
journal, January 1992


(Pentamethylcyclopentadienyl)iridium-PTA (PTA = 1,3,5-Triaza-7-phosphaadamantane) Complexes and Their Application in Catalytic Water Phase Carbon Dioxide Hydrogenation
journal, February 2008

  • Erlandsson, Mikael; Landaeta, Vanessa R.; Gonsalvi, Luca
  • European Journal of Inorganic Chemistry, Vol. 2008, Issue 4
  • DOI: 10.1002/ejic.200700792

Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO 2 Reduction Catalyst
journal, June 2011

  • Schmeier, Timothy J.; Dobereiner, Graham E.; Crabtree, Robert H.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja2035514

Catalytic Hydrogenation of Carbon Dioxide Using Ir(III)−Pincer Complexes
journal, October 2009

  • Tanaka, Ryo; Yamashita, Makoto; Nozaki, Kyoko
  • Journal of the American Chemical Society, Vol. 131, Issue 40
  • DOI: 10.1021/ja903574e

‘(η6-arene)Ru(bis-NHC)’ complexes for the reduction of CO2 to formate with hydrogen and by transfer hydrogenation with iPrOH
journal, January 2010

  • Sanz, Sergio; Azua, Arturo; Peris, Eduardo
  • Dalton Transactions, Vol. 39, Issue 27
  • DOI: 10.1039/c003220d

Positional Effects of Hydroxy Groups on Catalytic Activity of Proton-Responsive Half-Sandwich Cp*Iridium(III) Complexes
journal, November 2014

  • Suna, Yuki; Ertem, Mehmed Z.; Wang, Wan-Hui
  • Organometallics, Vol. 33, Issue 22
  • DOI: 10.1021/om500832d

Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure
journal, January 2012

  • Maenaka, Yuta; Suenobu, Tomoyoshi; Fukuzumi, Shunichi
  • Energy & Environmental Science, Vol. 5, Issue 6
  • DOI: 10.1039/c2ee03315a

Simultaneous Tuning of Activity and Water Solubility of Complex Catalysts by Acid−Base Equilibrium of Ligands for Conversion of Carbon Dioxide
journal, January 2007

  • Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Sugihara, Hideki
  • Organometallics, Vol. 26, Issue 3
  • DOI: 10.1021/om060899e

Mechanistic Insight through Factors Controlling Effective Hydrogenation of CO 2 Catalyzed by Bioinspired Proton-Responsive Iridium(III) Complexes
journal, April 2013

  • Wang, Wan-Hui; Muckerman, James T.; Fujita, Etsuko
  • ACS Catalysis, Vol. 3, Issue 5
  • DOI: 10.1021/cs400172j

CO 2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand
journal, February 2015

  • Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi
  • Inorganic Chemistry, Vol. 54, Issue 11
  • DOI: 10.1021/ic502904q

Efficient H 2 generation from formic acid using azole complexes in water
journal, January 2014

  • Manaka, Yuichi; Wang, Wan-Hui; Suna, Yuki
  • Catal. Sci. Technol., Vol. 4, Issue 1
  • DOI: 10.1039/C3CY00830D

Long-range metal–ligand bifunctional catalysis: cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid
journal, January 2013

  • Barnard, Jonathan H.; Wang, Chao; Berry, Neil G.
  • Chemical Science, Vol. 4, Issue 3
  • DOI: 10.1039/c2sc21923a

    Works referencing / citing this record:

    A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water: A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water
    journal, April 2019

    • Fink, Cornel; Laurenczy, Gábor
    • European Journal of Inorganic Chemistry, Vol. 2019, Issue 18
    • DOI: 10.1002/ejic.201900344

    CO 2 hydrogenation by phosphorus–nitrogen PN 3 P-pincer iridium hydride complexes: elucidation of the deactivation pathway
    journal, January 2019

    • Pan, Yupeng; Guan, Chao; Li, Huaifeng
    • Dalton Transactions, Vol. 48, Issue 34
    • DOI: 10.1039/c9dt01319a

    Conversion of CO 2 from air into formate using amines and phosphorus-nitrogen PN 3 P-Ru( ii ) pincer complexes
    journal, January 2018

    • Guan, Chao; Pan, Yupeng; Ang, Eleanor Pei Ling
    • Green Chemistry, Vol. 20, Issue 18
    • DOI: 10.1039/c8gc02186d

    Base-free hydrogenation of CO 2 to formic acid in water with an iridium complex bearing a N,N′-diimine ligand
    journal, January 2016

    • Lu, Sheng-Mei; Wang, Zhijun; Li, Jun
    • Green Chemistry, Vol. 18, Issue 16
    • DOI: 10.1039/c6gc00856a

    New Ru( ii ) N′NN′-type pincer complexes: synthesis, characterization and the catalytic hydrogenation of CO 2 or bicarbonates to formate salts
    journal, January 2017

    • Dai, Zengjin; Luo, Qi; Cong, Hengjiang
    • New Journal of Chemistry, Vol. 41, Issue 8
    • DOI: 10.1039/c6nj03855g

    A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water: A Precious Catalyst: Rhodium-Catalyzed Formic Acid Dehydrogenation in Water
    journal, April 2019

    • Fink, Cornel; Laurenczy, Gábor
    • European Journal of Inorganic Chemistry, Vol. 2019, Issue 18
    • DOI: 10.1002/ejic.201900344

    Base-free hydrogenation of CO 2 to formic acid in water with an iridium complex bearing a N,N′-diimine ligand
    journal, January 2016

    • Lu, Sheng-Mei; Wang, Zhijun; Li, Jun
    • Green Chemistry, Vol. 18, Issue 16
    • DOI: 10.1039/c6gc00856a

    New Ru( ii ) N′NN′-type pincer complexes: synthesis, characterization and the catalytic hydrogenation of CO 2 or bicarbonates to formate salts
    journal, January 2017

    • Dai, Zengjin; Luo, Qi; Cong, Hengjiang
    • New Journal of Chemistry, Vol. 41, Issue 8
    • DOI: 10.1039/c6nj03855g

    Conversion of CO 2 from air into formate using amines and phosphorus-nitrogen PN 3 P-Ru( ii ) pincer complexes
    journal, January 2018

    • Guan, Chao; Pan, Yupeng; Ang, Eleanor Pei Ling
    • Green Chemistry, Vol. 20, Issue 18
    • DOI: 10.1039/c8gc02186d

    CO 2 hydrogenation by phosphorus–nitrogen PN 3 P-pincer iridium hydride complexes: elucidation of the deactivation pathway
    journal, January 2019

    • Pan, Yupeng; Guan, Chao; Li, Huaifeng
    • Dalton Transactions, Vol. 48, Issue 34
    • DOI: 10.1039/c9dt01319a

    Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid
    journal, September 2018

    • Onishi, Naoya; Iguchi, Masayuki; Yang, Xinchun
    • Advanced Energy Materials, Vol. 9, Issue 23
    • DOI: 10.1002/aenm.201801275

    Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline‐Based, Proton‐Responsive Ligand
    journal, December 2016


    Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO 2 Hydrogenation
    journal, November 2017


    Sequential hydrogen production system from formic acid and H 2 /CO 2 separation under high-pressure conditions
    journal, January 2018

    • Iguchi, Masayuki; Chatterjee, Maya; Onishi, Naoya
    • Sustainable Energy & Fuels, Vol. 2, Issue 8
    • DOI: 10.1039/c8se00087e