DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Discovery of Fe–Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings

Abstract

An efficient photoanode is a prerequisite for a viable solar fuels technology. The challenges to realizing an efficient photoanode include the integration of a semiconductor light absorber and a metal oxide electrocatalyst to optimize corrosion protection, light trapping, hole transport, and photocarrier recombination sites. To efficiently explore metal oxide coatings, we employ a high-throughput methodology wherein a uniform BiVO 4 film is coated with 858 unique metal oxide coatings covering a range of metal oxide loadings and the full (Ni-Fe-Co-Ce)O x pseudoquaternary composition space. Photoelectrochemical characterization of the photoanodes reveals that specific combinations of metal oxide composition and loading provide up to a 13-fold increase in the maximum photoelectrochemical power generation for oxygen evolution in pH 13 electrolyte. Through mining of the high-throughput data we identify composition regions that form improved interfaces with BiVO 4 . Of particular note, integrated photoanodes with catalyst compositions in the range Fe (0.4-0.6) Ce (0.6-0.4) O x exhibit high interface quality and excellent photoelectrochemical power conversion. Scaled-up inkjet-printed electrodes and photoanodic electrodeposition of this composition on BiVO 4 confirms the discovery and the synthesis-independent interface improvement of (Fe-Ce)O x coatings on BiVO 4.

Authors:
 [1];  [1];  [2];  [2];  [2];  [1];  [1]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis (JCAP)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis (JCAP) and Chemical Sciences Division
Publication Date:
Research Org.:
California Institute of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis (JCAP); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1333887
Alternate Identifier(s):
OSTI ID: 1454487
Grant/Contract Number:  
SC0004993; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 8; Journal Issue: 36; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 14 SOLAR ENERGY; high-throughput experimentation; materials integration; oxygen evolution reaction; photoanode; solar fuels

Citation Formats

Shinde, Aniketa, Guevarra, Dan, Liu, Guiji, Sharp, Ian D., Toma, Francesca M., Gregoire, John M., and Haber, Joel A. Discovery of Fe–Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings. United States: N. p., 2016. Web. doi:10.1021/acsami.6b06714.
Shinde, Aniketa, Guevarra, Dan, Liu, Guiji, Sharp, Ian D., Toma, Francesca M., Gregoire, John M., & Haber, Joel A. Discovery of Fe–Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings. United States. https://doi.org/10.1021/acsami.6b06714
Shinde, Aniketa, Guevarra, Dan, Liu, Guiji, Sharp, Ian D., Toma, Francesca M., Gregoire, John M., and Haber, Joel A. Tue . "Discovery of Fe–Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings". United States. https://doi.org/10.1021/acsami.6b06714. https://www.osti.gov/servlets/purl/1333887.
@article{osti_1333887,
title = {Discovery of Fe–Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings},
author = {Shinde, Aniketa and Guevarra, Dan and Liu, Guiji and Sharp, Ian D. and Toma, Francesca M. and Gregoire, John M. and Haber, Joel A.},
abstractNote = {An efficient photoanode is a prerequisite for a viable solar fuels technology. The challenges to realizing an efficient photoanode include the integration of a semiconductor light absorber and a metal oxide electrocatalyst to optimize corrosion protection, light trapping, hole transport, and photocarrier recombination sites. To efficiently explore metal oxide coatings, we employ a high-throughput methodology wherein a uniform BiVO 4 film is coated with 858 unique metal oxide coatings covering a range of metal oxide loadings and the full (Ni-Fe-Co-Ce)O x pseudoquaternary composition space. Photoelectrochemical characterization of the photoanodes reveals that specific combinations of metal oxide composition and loading provide up to a 13-fold increase in the maximum photoelectrochemical power generation for oxygen evolution in pH 13 electrolyte. Through mining of the high-throughput data we identify composition regions that form improved interfaces with BiVO 4 . Of particular note, integrated photoanodes with catalyst compositions in the range Fe (0.4-0.6) Ce (0.6-0.4) O x exhibit high interface quality and excellent photoelectrochemical power conversion. Scaled-up inkjet-printed electrodes and photoanodic electrodeposition of this composition on BiVO 4 confirms the discovery and the synthesis-independent interface improvement of (Fe-Ce)O x coatings on BiVO 4.},
doi = {10.1021/acsami.6b06714},
journal = {ACS Applied Materials and Interfaces},
number = 36,
volume = 8,
place = {United States},
year = {Tue Aug 23 00:00:00 EDT 2016},
month = {Tue Aug 23 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013

  • McCrory, Charles C. L.; Jung, Suho; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja407115p

Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
journal, July 2013

  • Abdi, Fatwa F.; Han, Lihao; Smets, Arno H. M.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3195

A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting
journal, April 2014

  • Bornoz, Pauline; Abdi, Fatwa F.; Tilley, S. David
  • The Journal of Physical Chemistry C, Vol. 118, Issue 30
  • DOI: 10.1021/jp500441h

Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells
journal, August 2014


Electronic Structure of Monoclinic BiVO 4
journal, September 2014

  • Cooper, Jason K.; Gul, Sheraz; Toma, Francesca M.
  • Chemistry of Materials, Vol. 26, Issue 18
  • DOI: 10.1021/cm5025074

Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate
journal, January 2015

  • Cooper, Jason K.; Gul, Sheraz; Toma, Francesca M.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 6
  • DOI: 10.1021/jp512169w

Marked enhancement in electron–hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO 4 photoanodes
journal, January 2014

  • Park, Yiseul; Kang, Donghyeon; Choi, Kyoung-Shin
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 3
  • DOI: 10.1039/C3CP53649A

Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias
journal, January 2013

  • Ding, Chunmei; Shi, Jingying; Wang, Donge
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 13
  • DOI: 10.1039/c3cp50295c

Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO 2 /Ni Coatings
journal, August 2014

  • McDowell, Matthew T.; Lichterman, Michael F.; Spurgeon, Joshua M.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 34
  • DOI: 10.1021/jp506133y

Development of solar fuels photoanodes through combinatorial integration of Ni–La–Co–Ce oxide catalysts on BiVO 4
journal, January 2016

  • Guevarra, D.; Shinde, A.; Suram, S. K.
  • Energy & Environmental Science, Vol. 9, Issue 2
  • DOI: 10.1039/C5EE03488D

Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators
journal, October 2015

  • Hu, Shu; Lewis, Nathan S.; Ager, Joel W.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 43
  • DOI: 10.1021/acs.jpcc.5b05976

Interfacial band-edge energetics for solar fuels production
journal, January 2015

  • Smith, Wilson A.; Sharp, Ian D.; Strandwitz, Nicholas C.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE01822F

Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes
journal, December 2013

  • Lin, Fuding; Boettcher, Shannon W.
  • Nature Materials, Vol. 13, Issue 1
  • DOI: 10.1038/nmat3811

Impact of Electrocatalyst Activity and Ion Permeability on Water-Splitting Photoanodes
journal, June 2015

  • Lin, Fuding; Bachman, Benjamin F.; Boettcher, Shannon W.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 13
  • DOI: 10.1021/acs.jpclett.5b00904

Semiconductor–Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting
journal, April 2016

  • Nellist, Michael R.; Laskowski, Forrest A. L.; Lin, Fuding
  • Accounts of Chemical Research, Vol. 49, Issue 4
  • DOI: 10.1021/acs.accounts.6b00001

Photocatalytic Water Oxidation on BiVO 4 with the Electrocatalyst as an Oxidation Cocatalyst: Essential Relations between Electrocatalyst and Photocatalyst
journal, February 2012

  • Wang, Donge; Li, Rengui; Zhu, Jian
  • The Journal of Physical Chemistry C, Vol. 116, Issue 8
  • DOI: 10.1021/jp210584b

Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO 4 Photoanodes
journal, April 2012

  • Abdi, Fatwa F.; van de Krol, Roel
  • The Journal of Physical Chemistry C, Vol. 116, Issue 17
  • DOI: 10.1021/jp3007552

Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by “Co-Pi” Catalyst-Modified W:BiVO 4
journal, November 2011

  • Zhong, Diane K.; Choi, Sujung; Gamelin, Daniel R.
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja207348x

Cobalt–phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes
journal, January 2011

  • Jeon, Tae Hwa; Choi, Wonyong; Park, Hyunwong
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 48
  • DOI: 10.1039/c1cp23135a

Efficient Water Splitting via a Heteroepitaxial BiVO4 Photoelectrode Decorated with Co-Pi Catalysts
journal, July 2012


Screening of Electrocatalysts for Photoelectrochemical Water Oxidation on W-Doped BiVO 4 Photocatalysts by Scanning Electrochemical Microscopy
journal, June 2011

  • Ye, Heechang; Park, Hyun S.; Bard, Allen J.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 25
  • DOI: 10.1021/jp200852c

Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation
journal, June 2012

  • Jia, Q.; Iwashina, K.; Kudo, A.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 29
  • DOI: 10.1073/pnas.1204623109

Mo-Doped BiVO 4 Photoanodes Synthesized by Reactive Sputtering
journal, February 2015


Efficient solar photoelectrolysis by nanoporous Mo:BiVO 4 through controlled electron transport
journal, January 2014

  • Seabold, Jason A.; Zhu, Kai; Neale, Nathan R.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 3
  • DOI: 10.1039/C3CP54356K

Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst
journal, January 2012

  • Seabold, Jason A.; Choi, Kyoung-Shin
  • Journal of the American Chemical Society, Vol. 134, Issue 4, p. 2186-2192
  • DOI: 10.1021/ja209001d

Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting
journal, February 2014


Efficient Photoelectrochemical Water Oxidation over Hydrogen-Reduced Nanoporous BiVO 4 with Ni-B i Electrocatalyst
journal, May 2015

  • Gan, Jiayong; Lu, Xihong; Rajeeva, Bharath Bangalore
  • ChemElectroChem, Vol. 2, Issue 9
  • DOI: 10.1002/celc.201500091

Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes
journal, January 2013

  • Choi, Sung Kyu; Choi, Wonyong; Park, Hyunwoong
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 17
  • DOI: 10.1039/c3cp00073g

Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System
journal, January 2015


An electrochemical engineering assessment of the operational conditions and constraints for solar-driven water-splitting systems at near-neutral pH
journal, January 2015

  • Singh, Meenesh R.; Papadantonakis, Kimberly; Xiang, Chengxiang
  • Energy & Environmental Science, Vol. 8, Issue 9
  • DOI: 10.1039/C5EE01721A

Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes
journal, July 2016

  • Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12012

Enhanced Stability and Activity for Water Oxidation in Alkaline Media with Bismuth Vanadate Photoelectrodes Modified with a Cobalt Oxide Catalytic Layer Produced by Atomic Layer Deposition
journal, November 2013

  • Lichterman, Michael F.; Shaner, Matthew R.; Handler, Sheila G.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 23
  • DOI: 10.1021/jz4022415

Improving Stability and Photoelectrochemical Performance of BiVO 4 Photoanodes in Basic Media by Adding a ZnFe 2 O 4 Layer
journal, January 2016


Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials
journal, June 2013

  • Green, Martin L.; Takeuchi, Ichiro; Hattrick-Simpers, Jason R.
  • Journal of Applied Physics, Vol. 113, Issue 23
  • DOI: 10.1063/1.4803530

A review of high throughput and combinatorial electrochemistry
journal, November 2011


Discovery of Overcoating Metal Oxides on Photoelectrode for Water Splitting by Automated Screening
journal, September 2015


High-Throughput Mapping of the Electrochemical Properties of (Ni-Fe-Co-Ce)O x Oxygen-Evolution Catalysts
journal, December 2013

  • Haber, Joel A.; Xiang, Chengxiang; Guevarra, Dan
  • ChemElectroChem, Vol. 1, Issue 3
  • DOI: 10.1002/celc.201300229

Discovery of New Oxygen Evolution Reaction Electrocatalysts by Combinatorial Investigation of the Ni-La-Co-Ce Oxide Composition Space
journal, July 2014


Combined Catalysis and Optical Screening for High Throughput Discovery of Solar Fuels Catalysts
journal, January 2013

  • Gregoire, J. M.; Xiang, C.; Mitrovic, S.
  • Journal of The Electrochemical Society, Vol. 160, Issue 4
  • DOI: 10.1149/2.035304jes

Solution-processed multilayered BiVO 4 photoanodes: influence of intermediate heat treatments on the photoactivity
journal, January 2016

  • Chemseddine, A.; Ullrich, K.; Mete, T.
  • Journal of Materials Chemistry A, Vol. 4, Issue 5
  • DOI: 10.1039/C5TA08472E

Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design
journal, February 2015

  • Haber, Joel A.; Anzenburg, Eitan; Yano, Junko
  • Advanced Energy Materials, Vol. 5, Issue 10
  • DOI: 10.1002/aenm.201402307

Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements
journal, October 2014

  • Shinde, Aniketa; Guevarra, Dan; Haber, Joel A.
  • Journal of Materials Research, Vol. 30, Issue 3
  • DOI: 10.1557/jmr.2014.296

Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation
journal, January 2015

  • Coridan, Robert H.; Nielander, Adam C.; Francis, Sonja A.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE00777A

An Optocatalytic Model for Semiconductor–Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts
journal, March 2013

  • Trotochaud, Lena; Mills, Thomas J.; Boettcher, Shannon W.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 6
  • DOI: 10.1021/jz4002604

Heterogeneous Water Oxidation: Surface Activity versus Amorphization Activation in Cobalt Phosphate Catalysts
journal, January 2015

  • González-Flores, Diego; Sánchez, Irene; Zaharieva, Ivelina
  • Angewandte Chemie International Edition, Vol. 54, Issue 8
  • DOI: 10.1002/anie.201409333

Electrochemical synthesis of inorganic polycrystalline electrodes with controlled architectures
journal, October 2010

  • Choi, Kyoung-Shin; Jang, Ho Seong; McShane, Colleen M.
  • MRS Bulletin, Vol. 35, Issue 10
  • DOI: 10.1557/mrs2010.504

Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting
journal, August 2015


Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production
journal, November 2009

  • Steinmiller, E. M. P.; Choi, K. -S.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 49
  • DOI: 10.1073/pnas.0910203106

Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation
journal, January 2011

  • Zhong, Diane K.; Cornuz, Maurin; Sivula, Kevin
  • Energy & Environmental Science, Vol. 4, Issue 5
  • DOI: 10.1039/c1ee01034d

Works referencing / citing this record:

Single-Source Bismuth (Transition Metal) Polyoxovanadate Precursors for the Scalable Synthesis of Doped BiVO 4 Photoanodes
journal, October 2018

  • Lu, Haijiao; Andrei, Virgil; Jenkinson, Kellie J.
  • Advanced Materials, Vol. 30, Issue 46
  • DOI: 10.1002/adma.201804033

Photocurrent Recombination Through Surface Segregation in Al–Cr–Fe–O Photocathodes
journal, October 2019

  • Stein, Helge S.; Zhang, Siyuan; Li, Yujiao
  • Zeitschrift für Physikalische Chemie, Vol. 0, Issue 0
  • DOI: 10.1515/zpch-2019-1459

Tracking materials science data lineage to manage millions of materials experiments and analyses
journal, July 2019

  • Soedarmadji, Edwin; Stein, Helge S.; Suram, Santosh K.
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0216-x

A Combinatorial Approach for Optimization of Oxygen Evolution Catalyst Loading on Mo‐doped BiVO 4 Photoanodes
journal, April 2019

  • Gutkowski, Ramona; Masa, Justus; Schuhmann, Wolfgang
  • Electroanalysis, Vol. 31, Issue 8
  • DOI: 10.1002/elan.201900147

Scalable Triple Cation Mixed Halide Perovskite-BiVO 4 Tandems for Bias-Free Water Splitting
journal, July 2018

  • Andrei, Virgil; Hoye, Robert L. Z.; Crespo-Quesada, Micaela
  • Advanced Energy Materials, Vol. 8, Issue 25
  • DOI: 10.1002/aenm.201801403

Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review
journal, November 2018


Identifying high-efficiency oxygen evolution electrocatalysts from Co–Ni–Cu based selenides through combinatorial electrodeposition
journal, January 2019

  • Cao, Xi; Johnson, Emily; Nath, Manashi
  • Journal of Materials Chemistry A, Vol. 7, Issue 16
  • DOI: 10.1039/c9ta00863b

Recent developments in complex metal oxide photoelectrodes
journal, April 2017

  • Abdi, Fatwa F.; Berglund, Sean P.
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 19
  • DOI: 10.1088/1361-6463/aa6738