DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

Abstract

The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strengthmore » of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. In conclusion, while a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

Authors:
 [1];  [1];  [1];  [1];  [2];  [2];  [2];  [1];  [3];  [4];  [1];  [1];  [4];  [1];  [3];  [1];  [1];  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. NASA Langley Research Center, Hampton, VA (United States)
  3. Colorado Univ., Boulder, CO (United States)
  4. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1331075
Report Number(s):
BNL-113178-2016-JA
Journal ID: ISSN 2169-897X; R&D Project: 2016-BNL-EE630EECA-Budg; KP1701000
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Volume: 121; Journal Issue: 16; Journal ID: ISSN 2169-897X
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Fast, Jerome D., Berg, Larry K., Zhang, Kai, Easter, Richard C., Ferrare, Richard A., Hair, Johnathan W., Hostetler, Chris A., Liu, Ying, Ortega, Ivan, Sedlacek, Arthur, Shilling, John E., Shrivastava, Manish, Springston, Stephen R., Tomlinson, Jason M., Volkamer, Rainer, Wilson, Jacqueline, Zaveri, Rahul A., and Zelenyuk, Alla. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project. United States: N. p., 2016. Web. doi:10.1002/2016JD025248.
Fast, Jerome D., Berg, Larry K., Zhang, Kai, Easter, Richard C., Ferrare, Richard A., Hair, Johnathan W., Hostetler, Chris A., Liu, Ying, Ortega, Ivan, Sedlacek, Arthur, Shilling, John E., Shrivastava, Manish, Springston, Stephen R., Tomlinson, Jason M., Volkamer, Rainer, Wilson, Jacqueline, Zaveri, Rahul A., & Zelenyuk, Alla. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project. United States. https://doi.org/10.1002/2016JD025248
Fast, Jerome D., Berg, Larry K., Zhang, Kai, Easter, Richard C., Ferrare, Richard A., Hair, Johnathan W., Hostetler, Chris A., Liu, Ying, Ortega, Ivan, Sedlacek, Arthur, Shilling, John E., Shrivastava, Manish, Springston, Stephen R., Tomlinson, Jason M., Volkamer, Rainer, Wilson, Jacqueline, Zaveri, Rahul A., and Zelenyuk, Alla. Mon . "Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project". United States. https://doi.org/10.1002/2016JD025248. https://www.osti.gov/servlets/purl/1331075.
@article{osti_1331075,
title = {Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project},
author = {Fast, Jerome D. and Berg, Larry K. and Zhang, Kai and Easter, Richard C. and Ferrare, Richard A. and Hair, Johnathan W. and Hostetler, Chris A. and Liu, Ying and Ortega, Ivan and Sedlacek, Arthur and Shilling, John E. and Shrivastava, Manish and Springston, Stephen R. and Tomlinson, Jason M. and Volkamer, Rainer and Wilson, Jacqueline and Zaveri, Rahul A. and Zelenyuk, Alla},
abstractNote = {The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. In conclusion, while a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.},
doi = {10.1002/2016JD025248},
journal = {Journal of Geophysical Research: Atmospheres},
number = 16,
volume = 121,
place = {United States},
year = {Mon Aug 22 00:00:00 EDT 2016},
month = {Mon Aug 22 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Lagrangian particle dispersion model FLEXPART-WRF version 3.1
journal, January 2013


Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic Aerosols
journal, December 2012


Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: detection limits and ionizer background effects
journal, January 2009

  • Drewnick, F.; Hings, S. S.; Alfarra, M. R.
  • Atmospheric Measurement Techniques, Vol. 2, Issue 1
  • DOI: 10.5194/amt-2-33-2009

The CU ground MAX-DOAS instrument: characterization of RMS noise limitations and first measurements near Pensacola, FL of BrO, IO, and CHOCHO
journal, January 2011

  • Coburn, S.; Dix, B.; Sinreich, R.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 11
  • DOI: 10.5194/amt-4-2421-2011

Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model
journal, January 2010

  • Gettelman, A.; Liu, X.; Ghan, S. J.
  • Journal of Geophysical Research, Vol. 115, Issue D18
  • DOI: 10.1029/2009JD013797

Mixing of anthropogenic pollution with stratospheric ozone: A case study from the North Atlantic wintertime troposphere
journal, October 2000

  • Parrish, D. D.; Holloway, J. S.; Jakoubek, R.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D19
  • DOI: 10.1029/2000JD900291

Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model
journal, January 2013

  • Wang, H.; Easter, R. C.; Rasch, P. J.
  • Geoscientific Model Development, Vol. 6, Issue 3
  • DOI: 10.5194/gmd-6-765-2013

A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli
journal, January 2015

  • Berg, L. K.; Shrivastava, M.; Easter, R. C.
  • Geoscientific Model Development, Vol. 8, Issue 2
  • DOI: 10.5194/gmd-8-409-2015

A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2: MOZART-2 DESCRIPTION AND EVALUATION
journal, December 2003

  • Horowitz, Larry W.; Walters, Stacy; Mauzerall, Denise L.
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D24
  • DOI: 10.1029/2002JD002853

Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations
journal, January 2006

  • Schulz, M.; Textor, C.; Kinne, S.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-5225-2006

Cloud-scale model intercomparison of chemical constituent transport in deep convection
journal, January 2007

  • Barth, M. C.; Kim, S. -W.; Wang, C.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 18
  • DOI: 10.5194/acp-7-4709-2007

Volcanic ash layer depth: Processes and mechanisms
journal, January 2015

  • Dacre, H. F.; Grant, A. L. M.; Harvey, N. J.
  • Geophysical Research Letters, Vol. 42, Issue 2
  • DOI: 10.1002/2014GL062454

The LAGRANTO Lagrangian analysis tool – version 2.0
journal, January 2015


An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol
journal, July 2011


A case study of boundary layer ventilation by convection and coastal processes
journal, January 2007

  • Dacre, H. F.; Gray, S. L.; Belcher, S. E.
  • Journal of Geophysical Research, Vol. 112, Issue D17
  • DOI: 10.1029/2006JD007984

The Deep Convective Clouds and Chemistry (DC3) Field Campaign
journal, August 2015

  • Barth, Mary C.; Cantrell, Christopher A.; Brune, William H.
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 8
  • DOI: 10.1175/BAMS-D-13-00290.1

The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning
journal, January 2011

  • Wiedinmyer, C.; Akagi, S. K.; Yokelson, R. J.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-625-2011

The CU 2D-MAX-DOAS instrument - part 2: Raman Scattering Probability Measurements and Retrieval of Aerosol Optical Properties
posted_content, January 2016

  • Ortega, Ivan; Coburn, Sean; Berg, Larry K.
  • Atmospheric Measurement Techniques Discussions
  • DOI: 10.5194/amt-2015-385

Anthropogenic sulfur dioxide emissions: 1850–2005
journal, January 2011

  • Smith, S. J.; van Aardenne, J.; Klimont, Z.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 3
  • DOI: 10.5194/acp-11-1101-2011

Black carbon semi-direct effects on cloud cover: review and synthesis
journal, January 2010


Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer
journal, December 2006

  • DeCarlo, Peter F.; Kimmel, Joel R.; Trimborn, Achim
  • Analytical Chemistry, Vol. 78, Issue 24
  • DOI: 10.1021/ac061249n

Do diurnal aerosol changes affect daily average radiative forcing?: DIURNAL AEROSOL CHANGES AND FORCING
journal, June 2013

  • Kassianov, Evgueni; Barnard, James; Pekour, Mikhail
  • Geophysical Research Letters, Vol. 40, Issue 12
  • DOI: 10.1002/grl.50567

Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and New Software for Data Visualization and Analysis in a Geo-Spatial Context
journal, January 2015

  • Zelenyuk, Alla; Imre, Dan; Wilson, Jacqueline
  • Journal of The American Society for Mass Spectrometry, Vol. 26, Issue 2
  • DOI: 10.1007/s13361-014-1043-4

Evaluation of a Modified Scheme for Shallow Convection: Implementation of CuP and Case Studies
journal, January 2013

  • Berg, Larry K.; Gustafson, William I.; Kassianov, Evgueni I.
  • Monthly Weather Review, Vol. 141, Issue 1
  • DOI: 10.1175/mwr-d-12-00136.1

Aerosol transport to the high Alpine sites Jungfraujoch (3454 m asl) and Colle Gnifetti (4452 m asl)
journal, February 1998


Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere
journal, January 2006

  • Schwarz, J. P.; Gao, R. S.; Fahey, D. W.
  • Journal of Geophysical Research, Vol. 111, Issue D16
  • DOI: 10.1029/2006JD007076

Modeling organic aerosols in a megacity: comparison of simple and complex representations of the volatility basis set approach
journal, January 2011

  • Shrivastava, M.; Fast, J.; Easter, R.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 13
  • DOI: 10.5194/acp-11-6639-2011

Instrument intercomparison of glyoxal, methyl glyoxal and NO 2 under simulated atmospheric conditions
journal, January 2015

  • Thalman, R.; Baeza-Romero, M. T.; Ball, S. M.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 4
  • DOI: 10.5194/amt-8-1835-2015

Aerosol transport and wet scavenging in deep convective clouds: A case study and model evaluation using a multiple passive tracer analysis approach
journal, August 2015

  • Yang, Qing; Easter, Richard C.; Campuzano‐Jost, Pedro
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 16
  • DOI: 10.1002/2015JD023647

Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model
journal, January 2006

  • Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.
  • Journal of Geophysical Research, Vol. 111, Issue D21
  • DOI: 10.1029/2005JD006721

The Detection Efficiency of the Single Particle Soot Photometer
journal, June 2010


Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results: AEROSOL PROFILES IN GLOBAL MODELS
journal, May 2012

  • Koffi, Brigitte; Schulz, Michael; Bréon, Francois-Marie
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D10
  • DOI: 10.1029/2011JD016858

Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)
journal, January 2008

  • Zaveri, Rahul A.; Easter, Richard C.; Fast, Jerome D.
  • Journal of Geophysical Research, Vol. 113, Issue D13
  • DOI: 10.1029/2007JD008782

The CU 2-D-MAX-DOAS instrument – Part 1: Retrieval of 3-D distributions of NO 2 and azimuth-dependent OVOC ratios
journal, January 2015

  • Ortega, I.; Koenig, T.; Sinreich, R.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 6
  • DOI: 10.5194/amt-8-2371-2015

Global transformation and fate of SOA: Implications of low-volatility SOA and gas-phase fragmentation reactions: Global Modeling of SOA
journal, May 2015

  • Shrivastava, Manish; Easter, Richard C.; Liu, Xiaohong
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 9
  • DOI: 10.1002/2014JD022563

Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest
journal, January 2016


Airborne Aerosol in Situ Measurements during TCAP: A Closure Study of Total Scattering
journal, July 2015

  • Kassianov, Evgueni; Berg, Larry; Pekour, Mikhail
  • Atmosphere, Vol. 6, Issue 8
  • DOI: 10.3390/atmos6081069

Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4)
journal, January 2010

  • Emmons, L. K.; Walters, S.; Hess, P. G.
  • Geoscientific Model Development, Vol. 3, Issue 1
  • DOI: 10.5194/gmd-3-43-2010

Air Pollutant Transport in a Coastal Environment. Part I: Two-Dimensional Simulations of Sea-Breeze and Mountain Effects
journal, August 1994


Technical Note: On the use of nudging for aerosol–climate model intercomparison studies
journal, January 2014


Implications of low volatility SOA and gas-phase fragmentation reactions on SOA loadings and their spatial and temporal evolution in the atmosphere: LOW VOLATILITY SOA AND GAS FRAGMENTATION
journal, April 2013

  • Shrivastava, Manish; Zelenyuk, Alla; Imre, Dan
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 8
  • DOI: 10.1002/jgrd.50160

Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the Community Atmosphere Model 5: ESTIMATES OF AEROSOL INDIRECT EFFECTS
journal, December 2012

  • Kooperman, Gabriel J.; Pritchard, Michael S.; Ghan, Steven J.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D23
  • DOI: 10.1029/2012JD018588

The importance of plume rise on the concentrations and atmospheric impacts of biomass burning aerosol
journal, January 2016

  • Walter, Carolin; Freitas, Saulo R.; Kottmeier, Christoph
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 14
  • DOI: 10.5194/acp-16-9201-2016

Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area
journal, January 2010

  • Tsimpidi, A. P.; Karydis, V. A.; Zavala, M.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 2
  • DOI: 10.5194/acp-10-525-2010

Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5
journal, January 2012

  • Liu, X.; Easter, R. C.; Ghan, S. J.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-709-2012

Interannual variability of long-range transport as seen at the Mt. Bachelor observatory
journal, January 2009

  • Reidmiller, D. R.; Jaffe, D. A.; Chand, D.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 2
  • DOI: 10.5194/acp-9-557-2009

Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
journal, January 2013

  • Myhre, G.; Samset, B. H.; Schulz, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 4
  • DOI: 10.5194/acp-13-1853-2013

Fully coupled “online” chemistry within the WRF model
journal, December 2005


Bounding the role of black carbon in the climate system: A scientific assessment: BLACK CARBON IN THE CLIMATE SYSTEM
journal, June 2013

  • Bond, T. C.; Doherty, S. J.; Fahey, D. W.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 11
  • DOI: 10.1002/jgrd.50171

A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization
journal, December 1990


Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles
journal, July 2000

  • Jayne, John T.; Leard, Danna C.; Zhang, Xuefeng
  • Aerosol Science and Technology, Vol. 33, Issue 1-2
  • DOI: 10.1080/027868200410840

Long-range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada
journal, August 2001

  • McKendry, I. G.; Hacker, J. P.; Stull, R.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D16
  • DOI: 10.1029/2000JD900359

The AeroCom evaluation and intercomparison of organic aerosol in global models
journal, January 2014

  • Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 19
  • DOI: 10.5194/acp-14-10845-2014

An Introduction to Boundary Layer Meteorology
book, January 1988


Airborne High Spectral Resolution Lidar for profiling aerosol optical properties
journal, January 2008

  • Hair, Johnathan W.; Hostetler, Chris A.; Cook, Anthony L.
  • Applied Optics, Vol. 47, Issue 36
  • DOI: 10.1364/AO.47.006734

Aerosol light-scattering enhancement due to water uptake during the TCAP campaign
journal, January 2014

  • Titos, G.; Jefferson, A.; Sheridan, P. J.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 13
  • DOI: 10.5194/acp-14-7031-2014

Uncertainty associated with convective wet removal of entrained aerosols in a global climate model
journal, January 2012

  • Croft, B.; Pierce, J. R.; Martin, R. V.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 22
  • DOI: 10.5194/acp-12-10725-2012

Analysis and quantification of the diversities of aerosol life cycles within AeroCom
journal, January 2006

  • Textor, C.; Schulz, M.; Guibert, S.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 7
  • DOI: 10.5194/acp-6-1777-2006

How much can the vertical distribution of black carbon affect its global direct radiative forcing?: HOW MUCH DO BC PROFILES AFFECT FORCING?
journal, October 2010

  • Zarzycki, Colin M.; Bond, Tami C.
  • Geophysical Research Letters, Vol. 37, Issue 20
  • DOI: 10.1029/2010GL044555

The effect of model spatial resolution on Secondary Organic Aerosol predictions: a case study at Whistler, BC, Canada
journal, January 2012

  • Wainwright, C. D.; Pierce, J. R.; Liggio, J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 22
  • DOI: 10.5194/acp-12-10911-2012

Black carbon vertical profiles strongly affect its radiative forcing uncertainty
journal, January 2013

  • Samset, B. H.; Myhre, G.; Schulz, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2423-2013

Impact of model grid spacing on regional- and urban- scale air quality predictions of organic aerosol
journal, January 2011

  • Stroud, C. A.; Makar, P. A.; Moran, M. D.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 7
  • DOI: 10.5194/acp-11-3107-2011

Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer
journal, January 2007

  • Canagaratna, M. R.; Jayne, J. T.; Jimenez, J. L.
  • Mass Spectrometry Reviews, Vol. 26, Issue 2
  • DOI: 10.1002/mas.20115

Satellite-derived direct radiative effect of aerosols dependent on cloud cover
journal, February 2009

  • Chand, D.; Wood, R.; Anderson, T. L.
  • Nature Geoscience, Vol. 2, Issue 3
  • DOI: 10.1038/ngeo437

Effects of Mixing State on Black Carbon Measurements by Laser-Induced Incandescence
journal, March 2007


HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols
journal, May 2011

  • Wofsy, S. C.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 369, Issue 1943
  • DOI: 10.1098/rsta.2010.0313

Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime
journal, January 2015

  • Hodzic, A.; Kasibhatla, P. S.; Jo, D. S.
  • Atmospheric Chemistry and Physics Discussions, Vol. 15, Issue 22
  • DOI: 10.5194/acpd-15-32413-2015

The Two-Column Aerosol Project: Phase I-Overview and impact of elevated aerosol layers on aerosol optical depth: THE TWO-COLUMN AEROSOL PROJECT
journal, January 2016

  • Berg, Larry K.; Fast, Jerome D.; Barnard, James C.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 1
  • DOI: 10.1002/2015JD023848

Convective Boundary Layer Heights Over Mountainous Terrain—A Review of Concepts
journal, December 2015


Assessing the CAM5 physics suite in the WRF-Chem model: implementation, resolution sensitivity, and a first evaluation for a regional case study
journal, January 2014

  • Ma, P. -L.; Rasch, P. J.; Fast, J. D.
  • Geoscientific Model Development, Vol. 7, Issue 3
  • DOI: 10.5194/gmd-7-755-2014

Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources
journal, January 2009

  • Chapman, E. G.; Gustafson, W. I.; Easter, R. C.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 3
  • DOI: 10.5194/acp-9-945-2009

Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical transport model
journal, January 2006

  • Liu, Hongyu; Crawford, James H.; Pierce, Robert B.
  • Journal of Geophysical Research, Vol. 111, Issue D20
  • DOI: 10.1029/2005JD006403

Aerosol lofting from sea breeze during the Indian Ocean Experiment
journal, January 2006

  • Verma, S.; Boucher, O.; Venkataraman, C.
  • Journal of Geophysical Research, Vol. 111, Issue D7
  • DOI: 10.1029/2005JD005953

The Arm Climate Research Facility: A Review of Structure and Capabilities
journal, March 2013

  • Mather, James H.; Voyles, Jimmy W.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 3
  • DOI: 10.1175/BAMS-D-11-00218.1

An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models: AN IMPROVED HINDCAST APPROACH
journal, November 2015

  • Ma, H. -Y.; Chuang, C. C.; Klein, S. A.
  • Journal of Advances in Modeling Earth Systems, Vol. 7, Issue 4
  • DOI: 10.1002/2015MS000490

Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004
journal, January 2007

  • Gustafson, William I.; Chapman, Elaine G.; Ghan, Steven J.
  • Geophysical Research Letters, Vol. 34, Issue 19
  • DOI: 10.1029/2007GL030021

A case study of transpacific warm conveyor belt transport: Influence of merging airstreams on trace gas import to North America: PACIFIC WARM CONVEYOR BELT TRANSPORT
journal, July 2004

  • Cooper, O. R.; Forster, C.; Parrish, D.
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D23
  • DOI: 10.1029/2003JD003624

Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model
journal, January 2011


Near-real-time global biomass burning emissions product from geostationary satellite constellation: GLOBAL BIOMASS BURNING EMISSIONS
journal, July 2012

  • Zhang, Xiaoyang; Kondragunta, Shobha; Ram, Jessica
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D14
  • DOI: 10.1029/2012JD017459

Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia
journal, January 2016

  • Feng, Y.; Kotamarthi, V. R.; Coulter, R.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 1
  • DOI: 10.5194/acp-16-247-2016

Transport and mixing between airmasses in cold frontal regions during Dynamics and Chemistry of Frontal Zones (DCFZ)
journal, January 2003


Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)
journal, January 2006

  • Guenther, A.; Karl, T.; Harley, P.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 11
  • DOI: 10.5194/acp-6-3181-2006

What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II
journal, January 2016

  • Kipling, Zak; Stier, Philip; Johnson, Colin E.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 4
  • DOI: 10.5194/acp-16-2221-2016

Works referencing / citing this record:

Combining airborne in situ and ground-based lidar measurements for attribution of aerosol layers
journal, January 2018

  • Nikandrova, Anna; Tabakova, Ksenia; Manninen, Antti
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 14
  • DOI: 10.5194/acp-18-10575-2018

In situ constraints on the vertical distribution of global aerosol
journal, January 2019

  • Watson-Parris, Duncan; Schutgens, Nick; Reddington, Carly
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 18
  • DOI: 10.5194/acp-19-11765-2019

Combining airborne in situ and ground-based lidar measurements for attribution of aerosol layers
journal, January 2018

  • Nikandorva, Anna; Tabakova, Ksenia; Manninen, Antti
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2017-1085