Effect of resonant magnetic perturbations on microturbulence in DIII-D pedestal
- Univ. of California, Irvine, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
- Univ. of California, Irvine, CA (United States)
- Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Vacuum resonant magnetic perturbations (RMP) applied to otherwise axisymmetric tokamak plasmas produce in general a combination of non-resonant effects that preserve closed flux surfaces (kink response) and resonant effects that introduce magnetic islands and/or stochasticity (tearing response). The effect of the plasma kink response on the linear stability and nonlinear transport of edge turbulence is studied using the gyrokinetic toroidal code GTC for a DIII-D plasma with applied n = 2 vacuum RMP. GTC simulations use the 3D equilibrium of DIII-D discharge 158103 (Nazikian et al 2015 Phys. Rev. Lett. 114 105002), which is provided by nonlinear ideal MHD VMEC equilibrium solver in order to include the effect of the plasma kink response to the external field but to exclude island formation at rational surfaces. Analysis using the GTC simulation results reveal no increase of growth rates for the electrostatic drift wave instability and for the electromagnetic kinetic-ballooning mode in the presence of the plasma kink response to the RMP. Moreover, nonlinear electrostatic simulations show that the effect of the 3D equilibrium on zonal flow damping is very weak and found to be insufficient to modify turbulent transport in the electrostatic turbulence.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1329144
- Journal Information:
- Nuclear Fusion, Journal Name: Nuclear Fusion Journal Issue: 1 Vol. 57; ISSN 0029-5515
- Publisher:
- IOP ScienceCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Microturbulence in DIII-D tokamak pedestal. IV. Electrostatic turbulent transport
Gyrokinetic understanding of the edge pedestal transport driven by resonant magnetic perturbations in a realistic divertor geometry