skip to main content


Title: Interrelationships between cellulase activity and cellulose particle morphology

It is well documented that the enzymatic hydrolysis of cellulose follows a reaction pattern where an initial phase of relatively high activity is followed by a gradual slow-down over the entire course of the reaction. This phenomenon is not readily explained by conventional factors like substrate depletion, product inhibition or enzyme instability. It has been suggested that the underlying reason for the loss of enzyme activity is connected to the heterogeneous structure of cellulose, but so far attempts to establish quantitative measures of such a correlation remain speculative. Here, we have carried out an extensive microscopy study of Avicel particles during extended hydrolysis with Hypocrea jecorina cellobiohydrolase 1 (CBH1) and endoglucanase 1 and 3 (EG1 and EG3) alone and in mixtures. We have used differential interference contrast microscopy and transmission electron microscopy to observe and quantify structural features at um and nm resolution, respectively. We implemented a semi-automatic image analysis protocol, which allowed us to analyze almost 3000 individual micrographs comprising a total of more than 300,000 particles. From this analysis we estimated the temporal development of the accessible surface area throughout the reaction. We found that the number of particles and their size as well as the surface roughnessmore » contributed to surface area, and that within the investigated degree of conversion (<30 %) this measure correlated linearly with the rate of reaction. Lastly, based on this observation we argue that cellulose structure, specifically surface area and roughness, plays a major role in the ubiquitous rate loss observed for cellulases.« less
 [1] ;  [2] ;  [3] ;  [1] ; ORCiD logo [4]
  1. Roskilde Univ. (Denmark). Dept. of Science, Systems and Models
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States). Biosciences Center
  3. Novozymes A/S, Bagsvaerd (Denmark)
  4. National Renewable Energy Lab. (NREL), Golden, CO (United States). National Bioenergy Center
Publication Date:
Report Number(s):
Journal ID: ISSN 0969-0239
Grant/Contract Number:
AC36-08GO28308; 11-116772; 14-4639; 14-3925
Accepted Manuscript
Journal Name:
Additional Journal Information:
Journal Volume: 23; Journal Issue: 4; Journal ID: ISSN 0969-0239
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 59 BASIC BIOLOGICAL SCIENCES; imaging; transmission electron microscopy; cellulose surface structure; cellulase; cellobiohydrolase; endoglucanase
OSTI Identifier: