skip to main content


Title: The contribution of radio-frequency rectification to field-aligned losses of high-harmonic fast wave power to the divertor in the National Spherical Torus eXperiment

The National Spherical Torus eXperiment (NSTX) can exhibit a major loss of high-harmonic fast wave (HHFW) power along scrape-off layer (SOL) field lines passing in front of the antenna, resulting in bright and hot spirals on both the upper and lower divertor regions. One possible mechanism for this loss is RF sheaths forming at the divertors. We demonstrate that swept-voltage Langmuir probe characteristics for probes under the spiral are shifted relative to those not under the spiral in a manner consistent with RF rectification. We estimate both the magnitude of the RF voltage across the sheath and the sheath heat flux transmission coefficient in the presence of the RF field. Though the precise comparison between computed heat flux and infrared (IR) thermography cannot yet be made, the computed heat deposition compares favorably with the projections from IR camera measurements. The RF sheath losses are significant and contribute substantially to the total SOL losses of HHFW power to the divertor for the cases studied. Our work will guide future experimentation on NSTX-U, where a wide-angle IR camera and a dedicated set of coaxial Langmuir probes for measuring the RF sheath voltage directly will quantify the contribution of RF sheath rectification tomore » the heat deposition from the SOL to the divertor.« less
 [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [3] ;  [1] ;  [1] ;  [1] ;  [4] ; ORCiD logo [1] ; ORCiD logo [1]
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Columbia Univ., New York, NY (United States)
Publication Date:
Grant/Contract Number:
AC05-00OR22725; AC02-09CH11466
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 4; Journal ID: ISSN 1070-664X
American Institute of Physics (AIP)
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1228291