DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coherent diffractive imaging of time-evolving samples with improved temporal resolution

Abstract

Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. Furthermore, this approach, which we call "chrono CDI," may find use in improving the time resolution in other imaging techniques.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1275788
Alternate Identifier(s):
OSTI ID: 1253930
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 93; Journal Issue: 18; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Ulvestad, A., Tripathi, A., Hruszkewycz, S. O., Cha, W., Wild, S. M., Stephenson, G. B., and Fuoss, P. H. Coherent diffractive imaging of time-evolving samples with improved temporal resolution. United States: N. p., 2016. Web. doi:10.1103/PhysRevB.93.184105.
Ulvestad, A., Tripathi, A., Hruszkewycz, S. O., Cha, W., Wild, S. M., Stephenson, G. B., & Fuoss, P. H. Coherent diffractive imaging of time-evolving samples with improved temporal resolution. United States. https://doi.org/10.1103/PhysRevB.93.184105
Ulvestad, A., Tripathi, A., Hruszkewycz, S. O., Cha, W., Wild, S. M., Stephenson, G. B., and Fuoss, P. H. Thu . "Coherent diffractive imaging of time-evolving samples with improved temporal resolution". United States. https://doi.org/10.1103/PhysRevB.93.184105. https://www.osti.gov/servlets/purl/1275788.
@article{osti_1275788,
title = {Coherent diffractive imaging of time-evolving samples with improved temporal resolution},
author = {Ulvestad, A. and Tripathi, A. and Hruszkewycz, S. O. and Cha, W. and Wild, S. M. and Stephenson, G. B. and Fuoss, P. H.},
abstractNote = {Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. Furthermore, this approach, which we call "chrono CDI," may find use in improving the time resolution in other imaging techniques.},
doi = {10.1103/PhysRevB.93.184105},
journal = {Physical Review B},
number = 18,
volume = 93,
place = {United States},
year = {Thu May 19 00:00:00 EDT 2016},
month = {Thu May 19 00:00:00 EDT 2016}
}

Journal Article:

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Three-dimensional mapping of a deformation field inside a nanocrystal
journal, July 2006

  • Pfeifer, Mark A.; Williams, Garth J.; Vartanyants, Ivan A.
  • Nature, Vol. 442, Issue 7098
  • DOI: 10.1038/nature04867

Coherent X-ray diffraction imaging of strain at the nanoscale
journal, April 2009

  • Robinson, Ian; Harder, Ross
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2400

Topological defect dynamics in operando battery nanoparticles
journal, June 2015


Three-dimensional imaging of dislocation propagation during crystal growth and dissolution
journal, June 2015

  • Clark, Jesse N.; Ihli, Johannes; Schenk, Anna S.
  • Nature Materials, Vol. 14, Issue 8
  • DOI: 10.1038/nmat4320

Single Particle Nanomechanics in Operando Batteries via Lensless Strain Mapping
journal, August 2014

  • Ulvestad, Andrew; Singer, Andrej; Cho, Hyung-Man
  • Nano Letters, Vol. 14, Issue 9
  • DOI: 10.1021/nl501858u

In situ strain evolution during a disconnection event in a battery nanoparticle
journal, January 2015

  • Ulvestad, Andrew; Clark, Jesse N.; Singer, Andrej
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 16
  • DOI: 10.1039/C5CP00372E

Core–shell strain structure of zeolite microcrystals
journal, July 2013

  • Cha, Wonsuk; Jeong, Nak Cheon; Song, Sanghoon
  • Nature Materials, Vol. 12, Issue 8
  • DOI: 10.1038/nmat3698

Differential stress induced by thiol adsorption on facetted nanocrystals
journal, September 2011

  • Watari, Moyu; McKendry, Rachel A.; Vögtli, Manuel
  • Nature Materials, Vol. 10, Issue 11
  • DOI: 10.1038/nmat3124

3D Imaging of Twin Domain Defects in Gold Nanoparticles
journal, May 2015


Deformation Twinning of a Silver Nanocrystal under High Pressure
journal, October 2015


Atomic Diffusion within Individual Gold Nanocrystal
journal, October 2014

  • Xiong, Gang; Clark, Jesse N.; Nicklin, Chris
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06765

Ultrafast Three-Dimensional Imaging of Lattice Dynamics in Individual Gold Nanocrystals
journal, May 2013


Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles
journal, December 2015

  • Ulvestad, A.; Welland, M. J.; Collins, S. S. E.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10092

High-resolution ab initio three-dimensional x-ray diffraction microscopy
journal, January 2006

  • Chapman, Henry N.; Barty, Anton; Marchesini, Stefano
  • Journal of the Optical Society of America A, Vol. 23, Issue 5
  • DOI: 10.1364/JOSAA.23.001179

Three-dimensional imaging of strain in a single ZnO nanorod
journal, December 2009

  • Newton, Marcus C.; Leake, Steven J.; Harder, Ross
  • Nature Materials, Vol. 9, Issue 2
  • DOI: 10.1038/nmat2607

Hydrogen in palladium and palladium alloys
journal, June 1996


The Palladium-Hydrogen System
journal, August 1991


Invited Article: A unified evaluation of iterative projection algorithms for phase retrieval
journal, January 2007

  • Marchesini, S.
  • Review of Scientific Instruments, Vol. 78, Issue 1
  • DOI: 10.1063/1.2403783

Visualizing and Improving the Robustness of Phase Retrieval Algorithms
journal, January 2015


Diffraction with a coherent X-ray beam: dynamics and imaging
journal, February 2007

  • Livet, Frédéric
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 63, Issue 2
  • DOI: 10.1107/S010876730605570X

Phase-retrieval stagnation problems and solutions
journal, January 1986

  • Fienup, J. R.; Wackerman, C. C.
  • Journal of the Optical Society of America A, Vol. 3, Issue 11
  • DOI: 10.1364/JOSAA.3.001897

X-ray image reconstruction from a diffraction pattern alone
journal, October 2003


TIMBIR: A Method for Time-Space Reconstruction From Interlaced Views
journal, June 2015

  • Aditya Mohan, K.; Venkatakrishnan, S. V.; Gibbs, John W.
  • IEEE Transactions on Computational Imaging, Vol. 1, Issue 2
  • DOI: 10.1109/TCI.2015.2431913

The Three-Dimensional Morphology of Growing Dendrites
journal, July 2015

  • Gibbs, J. W.; Mohan, K. A.; Gulsoy, E. B.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep11824

Quantitative 3D X-ray Imaging of Densification, Delamination and Fracture in a Micro-Composite under Compression: Quantitative 3D X-ray Imaging of Densification
journal, February 2015

  • Bø Fløystad, Jostein; Skjønsfjell, Eirik Torbjørn Bakken; Guizar-Sicairos, Manuel
  • Advanced Engineering Materials, Vol. 17, Issue 4
  • DOI: 10.1002/adem.201400443

Imaging Local Polarization in Ferroelectric Thin Films by Coherent X-Ray Bragg Projection Ptychography
journal, April 2013

  • Hruszkewycz, S. O.; Highland, M. J.; Holt, M. V.
  • Physical Review Letters, Vol. 110, Issue 17, Article No. 177601
  • DOI: 10.1103/PhysRevLett.110.177601

Dichroic coherent diffractive imaging
journal, August 2011

  • Tripathi, A.; Mohanty, J.; Dietze, S. H.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 33
  • DOI: 10.1073/pnas.1104304108

Works referencing / citing this record:

Identifying Defects with Guided Algorithms in Bragg Coherent Diffractive Imaging
journal, August 2017


Soft Route to 4D Tomography
journal, July 2016


Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals
text, January 2017

  • Shabalin, Anatoly; Yefanov, Oleksandr; Nosik, Valery
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2018-00334