skip to main content


Title: Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atoms and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.
 [1] ;  [1] ;  [2] ;  [2] ;  [2]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Physics. Condensed Matter
Additional Journal Information:
Journal Volume: 27; Journal Issue: 43; Related Information: EDDE partners with Oak Ridge National Laboratory (lead); Lawrence Livermore National Laboratory; University of Michigan; University of Tennessee; University of Wisconsin; University of Wyoming; Virginia Tech; Journal ID: ISSN 0953-8984
IOP Publishing
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ab initio molecular dynamics; Ni; NiCo; displacement energies
OSTI Identifier: