DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries

Abstract

All-solid-state lithium batteries are attractive candidates for next-generation energy storage devices because of their anticipated high energy density and intrinsic safety. Owing to their excellent ionic conductivity and stability with metallic lithium anodes, nanostructured lithium thiophosphate solid electrolytes such as β-Li3PS4 have found use in the fabrication of all-solid lithium batteries for large-scale energy storage systems. However, current methods for preparing air-sensitive solid electrolyte membranes of lithium thiophosphates can only generate thick membranes that compromise the battery's gravimetric/volumetric energy density and thus its rate performance. To overcome this limitation, the solid electrolyte's thickness needs to be effectively decreased to achieve ideal energy density and enhanced rate performance. In this paper, we show that the evaporation-induced self-assembly (EISA) technique produces ultrathin membranes of a lithium thiophosphate solid electrolyte with controllable thicknesses between 8 and 50 μm while maintaining the high ionic conductivity of β-Li3PS4 and stability with metallic lithium anodes up to 5 V. Finally, it is clearly demonstrated that this facile EISA approach allows for the preparation of ultrathin lithium thiophosphate solid electrolyte membranes for all-solid-state batteries.

Authors:
 [1];  [2];  [3];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences; Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry
  3. Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry; Georgia Inst. of Technology, Atlanta, GA (United States). Wallace H. Coulter Dept. of Biomedical Engineering; Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemical and Biomolecular Engineering
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1265621
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 4; Journal Issue: 21; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; Evaporation-induced self-assembly (EISA); Li solid-state batteries; solid electrolyte; Li3PS4

Citation Formats

Wang, Hui, Hood, Zachary D., Xia, Younan, and Liang, Chengdu. Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. United States: N. p., 2016. Web. doi:10.1039/C6TA02294D.
Wang, Hui, Hood, Zachary D., Xia, Younan, & Liang, Chengdu. Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. United States. https://doi.org/10.1039/C6TA02294D
Wang, Hui, Hood, Zachary D., Xia, Younan, and Liang, Chengdu. Mon . "Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries". United States. https://doi.org/10.1039/C6TA02294D. https://www.osti.gov/servlets/purl/1265621.
@article{osti_1265621,
title = {Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries},
author = {Wang, Hui and Hood, Zachary D. and Xia, Younan and Liang, Chengdu},
abstractNote = {All-solid-state lithium batteries are attractive candidates for next-generation energy storage devices because of their anticipated high energy density and intrinsic safety. Owing to their excellent ionic conductivity and stability with metallic lithium anodes, nanostructured lithium thiophosphate solid electrolytes such as β-Li3PS4 have found use in the fabrication of all-solid lithium batteries for large-scale energy storage systems. However, current methods for preparing air-sensitive solid electrolyte membranes of lithium thiophosphates can only generate thick membranes that compromise the battery's gravimetric/volumetric energy density and thus its rate performance. To overcome this limitation, the solid electrolyte's thickness needs to be effectively decreased to achieve ideal energy density and enhanced rate performance. In this paper, we show that the evaporation-induced self-assembly (EISA) technique produces ultrathin membranes of a lithium thiophosphate solid electrolyte with controllable thicknesses between 8 and 50 μm while maintaining the high ionic conductivity of β-Li3PS4 and stability with metallic lithium anodes up to 5 V. Finally, it is clearly demonstrated that this facile EISA approach allows for the preparation of ultrathin lithium thiophosphate solid electrolyte membranes for all-solid-state batteries.},
doi = {10.1039/C6TA02294D},
journal = {Journal of Materials Chemistry. A},
number = 21,
volume = 4,
place = {United States},
year = {Mon Apr 25 00:00:00 EDT 2016},
month = {Mon Apr 25 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 109 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Spontaneous formation of nanoparticle stripe patterns through dewetting
journal, November 2005

  • Huang, Jiaxing; Kim, Franklin; Tao, Andrea R.
  • Nature Materials, Vol. 4, Issue 12
  • DOI: 10.1038/nmat1517

Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries
journal, January 2014

  • Teragawa, Shingo; Aso, Keigo; Tadanaga, Kiyoharu
  • Journal of Materials Chemistry A, Vol. 2, Issue 14
  • DOI: 10.1039/c3ta15090a

All Solid-State Lithium–Sulfur Battery Using a Glass-Type P 2 S 5 –Li 2 S Electrolyte: Benefits on Anode Kinetics
journal, January 2015

  • Yamada, Takanobu; Ito, Seitaro; Omoda, Ryo
  • Journal of The Electrochemical Society, Vol. 162, Issue 4
  • DOI: 10.1149/2.0441504jes

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling
journal, June 2013

  • Ohtomo, Takamasa; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Journal of Solid State Electrochemistry, Vol. 17, Issue 10
  • DOI: 10.1007/s10008-013-2149-5

A review of conduction phenomena in Li-ion batteries
journal, December 2010


Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries
journal, September 2013

  • Tu, Zhengyuan; Kambe, Yu; Lu, Yingying
  • Advanced Energy Materials, Vol. 4, Issue 2, Article No. 1300654
  • DOI: 10.1002/aenm.201300654

All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes
journal, August 2011


Shape Effect in Nanoparticle Self-Assembly
journal, March 2004


Crystal structure and phase transitions of the lithium ionic conductor Li3PS4
journal, February 2011


Fast Lithium Ion Conduction in Li 2 SnS 3 : Synthesis, Physicochemical Characterization, and Electronic Structure
journal, December 2014

  • Brant, Jacilynn A.; Massi, Danielle M.; Holzwarth, N. A. W.
  • Chemistry of Materials, Vol. 27, Issue 1
  • DOI: 10.1021/cm5037524

The “filler effect”: A study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes
journal, December 2015


Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles
journal, January 2013

  • Hayashi, Akitoshi; Muramatsu, Hiromasa; Ohtomo, Takamasa
  • Journal of Materials Chemistry A, Vol. 1, Issue 21
  • DOI: 10.1039/c3ta10247e

Shape Effect in Nanoparticle Self-Assembly
journal, March 2004


Li4GeS4^|^ndash;Li3PS4 electrolyte thin films with highly ion-conductive crystals prepared by pulsed laser deposition
journal, January 2014

  • Ito, Yusuke; Sakuda, Atsushi; Ohtomo, Takamasa
  • Journal of the Ceramic Society of Japan, Vol. 122, Issue 1425
  • DOI: 10.2109/jcersj2.122.341

An Iodide-Based Li 7 P 2 S 8 I Superionic Conductor
journal, January 2015

  • Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory
  • Journal of the American Chemical Society, Vol. 137, Issue 4
  • DOI: 10.1021/ja508723m

Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4
journal, November 1984


Tunable plasmonic lattices of silver nanocrystals
journal, July 2007

  • Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong
  • Nature Nanotechnology, Vol. 2, Issue 7
  • DOI: 10.1038/nnano.2007.189

New, Highly Ion-Conductive Crystals Precipitated from Li2S-P2S5 Glasses
journal, April 2005

  • Mizuno, F.; Hayashi, A.; Tadanaga, K.
  • Advanced Materials, Vol. 17, Issue 7, p. 918-921
  • DOI: 10.1002/adma.200401286

One-Step Synthesis and Self-Assembly of Metal Oxide Nanoparticles into 3D Superlattices
journal, May 2012

  • Pucci, Andrea; Willinger, Marc-Georg; Liu, Feng
  • ACS Nano, Vol. 6, Issue 5
  • DOI: 10.1021/nn3010735

Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
journal, January 2011

  • Quartarone, Eliana; Mustarelli, Piercarlo
  • Chemical Society Reviews, Vol. 40, Issue 5
  • DOI: 10.1039/c0cs00081g

Spin-Dependent Tunneling in Self-Assembled Cobalt-Nanocrystal Superlattices
journal, November 2000


High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur Cathodes
journal, March 2015

  • Lv, Dongping; Zheng, Jianming; Li, Qiuyan
  • Advanced Energy Materials, Vol. 5, Issue 16, Article No. 1402290
  • DOI: 10.1002/aenm.201402290

Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4
journal, January 2013

  • Liu, Zengcai; Fu, Wujun; Payzant, E. Andrew
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 975-978
  • DOI: 10.1021/ja3110895

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Evaporation-Induced Self-Assembly: Nanostructures Made Easy
journal, May 1999


Air-stable, high-conduction solid electrolytes of arsenic-substituted Li 4 SnS 4
journal, January 2014

  • Sahu, Gayatri; Lin, Zhan; Li, Juchuan
  • Energy Environ. Sci., Vol. 7, Issue 3
  • DOI: 10.1039/C3EE43357A

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12.
journal, December 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • ChemInform, Vol. 38, Issue 50
  • DOI: 10.1002/chin.200750009

Works referencing / citing this record:

Solid Electrolyte Layers by Solution Deposition
journal, January 2018

  • Lim, Hee‐Dae; Lim, Hyung‐Kyu; Xing, Xing
  • Advanced Materials Interfaces, Vol. 5, Issue 8
  • DOI: 10.1002/admi.201701328

Fundamentals of inorganic solid-state electrolytes for batteries
journal, August 2019

  • Famprikis, Theodosios; Canepa, Pieremanuele; Dawson, James A.
  • Nature Materials, Vol. 18, Issue 12
  • DOI: 10.1038/s41563-019-0431-3

Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries
journal, January 2018


Fast synthesis of Li 2 S–P 2 S 5 –LiI solid electrolyte precursors
journal, January 2017

  • Phuc, Nguyen Huu Huy; Yamamoto, Tokoharu; Muto, Hiroyuki
  • Inorganic Chemistry Frontiers, Vol. 4, Issue 10
  • DOI: 10.1039/c7qi00353f

Digital Printing of Solid‐State Lithium‐Ion Batteries
journal, October 2019

  • Deiner, L. Jay; Bezerra, Carlos André Gomes; Howell, Thomas G.
  • Advanced Engineering Materials, Vol. 21, Issue 11
  • DOI: 10.1002/adem.201900737

Preparation of Li7P2S8I Solid Electrolyte and Its Application in All-Solid-State Lithium-Ion Batteries with Graphite Anode
journal, April 2019

  • Yamamoto, Tokoharu; Phuc, Nguyen Huu Huy; Muto, Hiroyuki
  • Electronic Materials Letters, Vol. 15, Issue 4
  • DOI: 10.1007/s13391-019-00133-y

Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery
journal, February 2019

  • Miura, Akira; Rosero-Navarro, Nataly Carolina; Sakuda, Atsushi
  • Nature Reviews Chemistry, Vol. 3, Issue 3
  • DOI: 10.1038/s41570-019-0078-2

High‐Efficiency Alignment of 3D Biotemplated Helices via Rotating Magnetic Field for Terahertz Chiral Metamaterials
journal, April 2019

  • Li, Xinghao; Zhao, Huan; Liu, Chang
  • Advanced Optical Materials, Vol. 7, Issue 12
  • DOI: 10.1002/adom.201900247

Synthesis and Properties of NaSICON‐type LATP and LAGP Solid Electrolytes
journal, July 2019


Building Better Batteries in the Solid State: A Review
journal, November 2019

  • Mauger, Alain; Julien, Christian M.; Paolella, Andrea
  • Materials, Vol. 12, Issue 23, p. 3892
  • DOI: 10.3390/ma12233892

Fabrication of Sub-Micrometer-Thick Solid Electrolyte Membranes of β-Li 3 PS 4 via Tiled Assembly of Nanoscale, Plate-Like Building Blocks
journal, May 2018

  • Hood, Zachary D.; Wang, Hui; Pandian, Amaresh Samuthira
  • Advanced Energy Materials, Vol. 8, Issue 21
  • DOI: 10.1002/aenm.201800014

Ultrathin, Flexible Polymer Electrolyte for Cost‐Effective Fabrication of All‐Solid‐State Lithium Metal Batteries
journal, November 2019

  • Wu, Jingyi; Rao, Zhixiang; Cheng, Zexiao
  • Advanced Energy Materials, Vol. 9, Issue 46
  • DOI: 10.1002/aenm.201902767

Solvent‐assisted ball milling for synthesizing solid electrolyte Li 7 P 3 S 11
journal, December 2018

  • Xue, Bai; Fan, Bo; Li, Bin
  • Journal of the American Ceramic Society, Vol. 102, Issue 6
  • DOI: 10.1111/jace.16249

Quantitative analysis of crystallinity in an argyrodite sulfide-based solid electrolyte synthesized via solution processing
journal, January 2019

  • Yubuchi, So; Tsukasaki, Hirofumi; Sakuda, Atsushi
  • RSC Advances, Vol. 9, Issue 25
  • DOI: 10.1039/c9ra00949c