DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Higher thermoelectric performance of Zintl phases (Eu 0.5 Yb 0.5 ) 1−x Ca x Mg 2 Bi 2 by band engineering and strain fluctuation

Abstract

Significance The search for high-efficiency thermoelectric materials encompasses many classes of semiconductors. Zintl phases are attractive thermoelectric materials for thermoelectric applications. Here, we report the high thermoelectric performance of the rarely studied bismuth (Bi)-based Zintl phases (Eu 0.5 Yb 0.5 ) 1−x Ca x Mg 2 Bi 2 with the record figure-of-merit ZT as high as 1.3 at 873 K. This ZT value is, to our knowledge, the highest ever reported in CaAl 2 Si 2 -based structures, especially compared with the best antimony (Sb)-based YbZn 0.4 Cd 1.6 Sb 2 compound. Because Sb-based Zintl compounds have been studied for many decades, this Bi-based Zintl phase with high thermoelectric properties could be a good thermoelectric material candidate in the future.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [4];  [7];  [2];  [1]
  1. Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204,
  2. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China,
  3. Department of Physics and Engineering Physics, Morgan State University, Baltimore, MD 21251,
  4. Department of Mechanical Engineering, University of Houston, Houston, TX 77204,
  5. State Key Lab of Electronic Thin Film and Integrated Device, University of Electric Science and Technology of China, Chengdu 611731, China,
  6. Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204,, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China,
  7. Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204,, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1260848
Grant/Contract Number:  
FG02-13ER46917; SC0010831
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 113 Journal Issue: 29; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English

Citation Formats

Shuai, Jing, Geng, Huiyuan, Lan, Yucheng, Zhu, Zhuan, Wang, Chao, Liu, Zihang, Bao, Jiming, Chu, Ching-Wu, Sui, Jiehe, and Ren, Zhifeng. Higher thermoelectric performance of Zintl phases (Eu 0.5 Yb 0.5 ) 1−x Ca x Mg 2 Bi 2 by band engineering and strain fluctuation. United States: N. p., 2016. Web. doi:10.1073/pnas.1608794113.
Shuai, Jing, Geng, Huiyuan, Lan, Yucheng, Zhu, Zhuan, Wang, Chao, Liu, Zihang, Bao, Jiming, Chu, Ching-Wu, Sui, Jiehe, & Ren, Zhifeng. Higher thermoelectric performance of Zintl phases (Eu 0.5 Yb 0.5 ) 1−x Ca x Mg 2 Bi 2 by band engineering and strain fluctuation. United States. https://doi.org/10.1073/pnas.1608794113
Shuai, Jing, Geng, Huiyuan, Lan, Yucheng, Zhu, Zhuan, Wang, Chao, Liu, Zihang, Bao, Jiming, Chu, Ching-Wu, Sui, Jiehe, and Ren, Zhifeng. Wed . "Higher thermoelectric performance of Zintl phases (Eu 0.5 Yb 0.5 ) 1−x Ca x Mg 2 Bi 2 by band engineering and strain fluctuation". United States. https://doi.org/10.1073/pnas.1608794113.
@article{osti_1260848,
title = {Higher thermoelectric performance of Zintl phases (Eu 0.5 Yb 0.5 ) 1−x Ca x Mg 2 Bi 2 by band engineering and strain fluctuation},
author = {Shuai, Jing and Geng, Huiyuan and Lan, Yucheng and Zhu, Zhuan and Wang, Chao and Liu, Zihang and Bao, Jiming and Chu, Ching-Wu and Sui, Jiehe and Ren, Zhifeng},
abstractNote = {Significance The search for high-efficiency thermoelectric materials encompasses many classes of semiconductors. Zintl phases are attractive thermoelectric materials for thermoelectric applications. Here, we report the high thermoelectric performance of the rarely studied bismuth (Bi)-based Zintl phases (Eu 0.5 Yb 0.5 ) 1−x Ca x Mg 2 Bi 2 with the record figure-of-merit ZT as high as 1.3 at 873 K. This ZT value is, to our knowledge, the highest ever reported in CaAl 2 Si 2 -based structures, especially compared with the best antimony (Sb)-based YbZn 0.4 Cd 1.6 Sb 2 compound. Because Sb-based Zintl compounds have been studied for many decades, this Bi-based Zintl phase with high thermoelectric properties could be a good thermoelectric material candidate in the future.},
doi = {10.1073/pnas.1608794113},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 29,
volume = 113,
place = {United States},
year = {Wed Jul 06 00:00:00 EDT 2016},
month = {Wed Jul 06 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1608794113

Citation Metrics:
Cited by: 128 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials
journal, September 2015

  • Fu, Chenguang; Bai, Shengqiang; Liu, Yintu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9144

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

High performance bulk thermoelectrics via a panoscopic approach
journal, May 2013


Structure and Properties of Single Crystalline CaMg 2 Bi 2 , EuMg 2 Bi 2 , and YbMg 2 Bi 2
journal, November 2011

  • May, Andrew F.; McGuire, Michael A.; Singh, David J.
  • Inorganic Chemistry, Vol. 50, Issue 21
  • DOI: 10.1021/ic2016808

Maximally localized Wannier functions: Theory and applications
journal, October 2012

  • Marzari, Nicola; Mostofi, Arash A.; Yates, Jonathan R.
  • Reviews of Modern Physics, Vol. 84, Issue 4
  • DOI: 10.1103/RevModPhys.84.1419

Beneficial Contribution of Alloy Disorder to Electron and Phonon Transport in Half-Heusler Thermoelectric Materials
journal, April 2013

  • Xie, Hanhui; Wang, Heng; Pei, Yanzhong
  • Advanced Functional Materials, Vol. 23, Issue 41
  • DOI: 10.1002/adfm.201300663

High Band Degeneracy Contributes to High Thermoelectric Performance in p-Type Half-Heusler Compounds
journal, August 2014

  • Fu, Chenguang; Zhu, Tiejun; Pei, Yanzhong
  • Advanced Energy Materials, Vol. 4, Issue 18
  • DOI: 10.1002/aenm.201400600

The Thermoelectric Figure of Merit and its Relation to Thermoelectric Generators†
journal, July 1959


Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Electronic and transport properties of zintl phase Ae Mg 2 Pn 2 , Ae  = Ca,Sr,Ba, Pn  = As,Sb,Bi in relation to Mg 3 Sb 2
journal, October 2013

  • Singh, David J.; Parker, David
  • Journal of Applied Physics, Vol. 114, Issue 14
  • DOI: 10.1063/1.4824465

Thermoelectric properties of semi-conducting compound Zn4Sb3
journal, July 2008


Traversing the Metal-Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb 14 Mn 1− x Al x Sb 11
journal, September 2008

  • Toberer, Eric S.; Cox, Catherine A.; Brown, Shawna R.
  • Advanced Functional Materials, Vol. 18, Issue 18
  • DOI: 10.1002/adfm.200800298

Designing high-performance layered thermoelectric materials through orbital engineering
journal, March 2016

  • Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10892

New Directions for Low-Dimensional Thermoelectric Materials
journal, April 2007

  • Dresselhaus, M. S.; Chen, G.; Tang, M. Y.
  • Advanced Materials, Vol. 19, Issue 8, p. 1043-1053
  • DOI: 10.1002/adma.200600527

Current progress and future challenges in thermoelectric power generation: From materials to devices
journal, April 2015


Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds
journal, August 2004

  • Yang, J.; Meisner, G. P.; Chen, L.
  • Applied Physics Letters, Vol. 85, Issue 7
  • DOI: 10.1063/1.1783022

Convergence of electronic bands for high performance bulk thermoelectrics
journal, May 2011

  • Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron
  • Nature, Vol. 473, Issue 7345, p. 66-69
  • DOI: 10.1038/nature09996

Band Engineering of Thermoelectric Materials
journal, October 2012


Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators
journal, August 1995


A new generation of p-type didymium skutterudites with high ZT
journal, April 2011


Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n -Type Mg 2 Si 1 x Sn x Solid Solutions
journal, April 2012


Ab initio Calculations of Intrinsic Point Defects in ZnSb
journal, May 2012

  • Bjerg, Lasse; Madsen, Georg K. H.; Iversen, Bo B.
  • Chemistry of Materials, Vol. 24, Issue 11
  • DOI: 10.1021/cm300642t

Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS
journal, February 2012


Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View
journal, March 2006

  • Tritt, Terry M.; Subramanian, M. A.
  • MRS Bulletin, Vol. 31, Issue 3
  • DOI: 10.1557/mrs2006.44

Thermoelectric Cooling and Power Generation
journal, July 1999


Thermoelectricity
journal, January 1984

  • Tuomi, Donald
  • Journal of The Electrochemical Society, Vol. 131, Issue 9
  • DOI: 10.1149/1.2116027

A new type of thermoelectric material, EuZn2Sb2
journal, October 2008

  • Zhang, Hui; Zhao, Jing-Tai; Grin, Yu.
  • The Journal of Chemical Physics, Vol. 129, Issue 16
  • DOI: 10.1063/1.3001608

Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1-xZn2Sb2
journal, November 2005

  • Gascoin, F.; Ottensmann, S.; Stark, D.
  • Advanced Functional Materials, Vol. 15, Issue 11
  • DOI: 10.1002/adfm.200500043

Thermoelectric transport properties of CaMg 2 Bi 2 , EuMg 2 Bi 2 , and YbMg 2 Bi 2
journal, January 2012


Model for Lattice Thermal Conductivity at Low Temperatures
journal, February 1959


Yb 14 MnSb 11 :  New High Efficiency Thermoelectric Material for Power Generation
journal, April 2006

  • Brown, Shawna R.; Kauzlarich, Susan M.; Gascoin, Franck
  • Chemistry of Materials, Vol. 18, Issue 7
  • DOI: 10.1021/cm060261t

Site preferences and bond length differences in CaAl2Si2-type Zintl compounds
journal, April 1986

  • Zheng, Chong.; Hoffmann, Roald.; Nesper, Reinhard.
  • Journal of the American Chemical Society, Vol. 108, Issue 8
  • DOI: 10.1021/ja00268a027

Thermoelectrics with Earth Abundant Elements: High Performance p-type PbS Nanostructured with SrS and CaS
journal, April 2012

  • Zhao, Li-Dong; He, Jiaqing; Wu, Chun-I
  • Journal of the American Chemical Society, Vol. 134, Issue 18
  • DOI: 10.1021/ja301772w

Lower limit to the lattice thermal conductivity of nanostructured Bi2Te3-based materials
journal, October 2009

  • Chiritescu, Catalin; Mortensen, Clay; Cahill, David G.
  • Journal of Applied Physics, Vol. 106, Issue 7
  • DOI: 10.1063/1.3226884

Thermoelectric properties of YbxEu1−xCd2Sb2
journal, November 2010

  • Zhang, H.; Fang, L.; Tang, M. -B.
  • The Journal of Chemical Physics, Vol. 133, Issue 19
  • DOI: 10.1063/1.3501370

Theory of the Variations in Paramagnetic Anisotropy Among Different Salts of the Iron Group
journal, July 1932


Materials for thermoelectric energy conversion
journal, April 1988


Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Electronic structure and transport in thermoelectric compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu)
journal, January 2010

  • Toberer, Eric S.; May, Andrew F.; Melot, Brent C.
  • Dalton Trans., Vol. 39, Issue 4
  • DOI: 10.1039/B914172C

Preparation and thermoelectric properties of semiconducting Zn4Sb3
journal, July 1997

  • Caillat, T.; Fleurial, J. -P.; Borshchevsky, A.
  • Journal of Physics and Chemistry of Solids, Vol. 58, Issue 7
  • DOI: 10.1016/S0022-3697(96)00228-4

Synthesis and characterization of the divalent samarium Zintl-phases SmMg2Bi2 and SmMg2Sb2
journal, November 2015


Nonstoichiometry in the Zintl Phase Yb 1−δ Zn 2 Sb 2 as a Route to Thermoelectric Optimization
journal, September 2014

  • Zevalkink, Alex; Zeier, Wolfgang G.; Cheng, Ethan
  • Chemistry of Materials, Vol. 26, Issue 19
  • DOI: 10.1021/cm502588r

Ferromagnetism and Its Stability in the Diluted Magnetic Semiconductor (In, Mn)As
journal, October 1998


Thermoelectric properties of Bi-based Zintl compounds Ca 1−x Yb x Mg 2 Bi 2
journal, January 2016

  • Shuai, Jing; Liu, Zihang; Kim, Hee Seok
  • Journal of Materials Chemistry A, Vol. 4, Issue 11
  • DOI: 10.1039/C6TA00507A

Synthesis and high thermoelectric efficiency of Zintl phase YbCd2−xZnxSb2
journal, March 2009

  • Wang, Xiao-Jun; Tang, Mei-Bo; Chen, Hao-Hong
  • Applied Physics Letters, Vol. 94, Issue 9
  • DOI: 10.1063/1.3040321

Local moment disorder in ferromagnetic alloys
journal, April 1993


The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions
journal, October 2012

  • Wang, Heng; LaLonde, Aaron D.; Pei, Yanzhong
  • Advanced Functional Materials, Vol. 23, Issue 12
  • DOI: 10.1002/adfm.201201576

Lithium Doping to Enhance Thermoelectric Performance of MgAgSb with Weak Electron-Phonon Coupling
journal, January 2016


Thermoelectric performance of NiyMo3Sb7−xTex (y≤0.1, 1.5≤x≤1.7)
journal, March 2009

  • Xu, H.; Kleinke, K. M.; Holgate, T.
  • Journal of Applied Physics, Vol. 105, Issue 5
  • DOI: 10.1063/1.3086641