DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oxygen reduction reaction: A framework for success

Abstract

Oxygen reduction at the cathode of fuel cells typically requires a platinum-based material to catalyse the reaction, but lower-cost, more stable catalysts are sought. Here, an intrinsically conductive metal–organic framework based on cheaper elements is shown to be a durable, structurally well-defined catalyst for this reaction.

Authors:
 [1]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1257815
Report Number(s):
SAND-2016-3707J
Journal ID: ISSN 2058-7546; nenergy201658
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 1; Journal Issue: 5; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Allendorf, Mark D. Oxygen reduction reaction: A framework for success. United States: N. p., 2016. Web. doi:10.1038/nenergy.2016.58.
Allendorf, Mark D. Oxygen reduction reaction: A framework for success. United States. https://doi.org/10.1038/nenergy.2016.58
Allendorf, Mark D. Fri . "Oxygen reduction reaction: A framework for success". United States. https://doi.org/10.1038/nenergy.2016.58. https://www.osti.gov/servlets/purl/1257815.
@article{osti_1257815,
title = {Oxygen reduction reaction: A framework for success},
author = {Allendorf, Mark D.},
abstractNote = {Oxygen reduction at the cathode of fuel cells typically requires a platinum-based material to catalyse the reaction, but lower-cost, more stable catalysts are sought. Here, an intrinsically conductive metal–organic framework based on cheaper elements is shown to be a durable, structurally well-defined catalyst for this reaction.},
doi = {10.1038/nenergy.2016.58},
journal = {Nature Energy},
number = 5,
volume = 1,
place = {United States},
year = {Fri May 06 00:00:00 EDT 2016},
month = {Fri May 06 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials
journal, January 2016

  • Zhou, Ming; Wang, Hsing-Lin; Guo, Shaojun
  • Chemical Society Reviews, Vol. 45, Issue 5
  • DOI: 10.1039/C5CS00414D

Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2
journal, March 2016

  • Miner, Elise M.; Fukushima, Tomohiro; Sheberla, Dennis
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10942

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Electrically Conductive Porous Metal-Organic Frameworks
journal, January 2016

  • Sun, Lei; Campbell, Michael G.; Dincă, Mircea
  • Angewandte Chemie International Edition, Vol. 55, Issue 11
  • DOI: 10.1002/anie.201506219

High Electrical Conductivity in Ni 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 , a Semiconducting Metal–Organic Graphene Analogue
journal, April 2014

  • Sheberla, Dennis; Sun, Lei; Blood-Forsythe, Martin A.
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja502765n

Cu 3 (hexaiminotriphenylene) 2 : An Electrically Conductive 2D Metal-Organic Framework for Chemiresistive Sensing
journal, February 2015

  • Campbell, Michael G.; Sheberla, Dennis; Liu, Sophie F.
  • Angewandte Chemie International Edition, Vol. 54, Issue 14
  • DOI: 10.1002/anie.201411854

Metal–organic Kagome lattices M 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 (M = Ni and Cu): from semiconducting to metallic by metal substitution
journal, January 2015

  • Chen, Shuang; Dai, Jun; Zeng, Xiao Cheng
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 8
  • DOI: 10.1039/C4CP05328A

Works referencing / citing this record:

A Stable Graphitic, Nanocarbon-Encapsulated, Cobalt-Rich Core-Shell Electrocatalyst as an Oxygen Electrode in a Water Electrolyzer
journal, January 2018

  • Sivanantham, Arumugam; Ganesan, Pandian; Estevez, Luis
  • Advanced Energy Materials, Vol. 8, Issue 14
  • DOI: 10.1002/aenm.201702838

A Cu II -based Metal-Organic Framework as an Efficient Photocatalyst for Direct Hydroxylation of Benzene to Phenol in Aqueous Solution
journal, November 2017

  • Zhang, Li; Qiu, Shuhai; Jiang, Guoqing
  • Asian Journal of Organic Chemistry, Vol. 7, Issue 1
  • DOI: 10.1002/ajoc.201700501

A Single‐Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction
journal, June 2019


A Single‐Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction
journal, July 2019

  • Xiao, Meiling; Zhu, Jianbing; Li, Gaoran
  • Angewandte Chemie International Edition, Vol. 58, Issue 28
  • DOI: 10.1002/anie.201905241

Density functional study on the high catalytic performance of single metal atoms on the NbC(001) surface
journal, January 2018

  • Kan, Dongxiao; Zhang, Xilin; Fu, Zhaoming
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 15
  • DOI: 10.1039/c8cp00069g