DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tracking interface and common curve dynamics for two-fluid flow in porous media

Abstract

Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measures of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.

Authors:
 [1];  [2];  [2];  [3]
  1. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
  2. Univ. of North Carolina, Chapel Hill, NC (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1255655
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Fluid Mechanics
Additional Journal Information:
Journal Volume: 796; Journal ID: ISSN 0022-1120
Publisher:
Cambridge University Press
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; contact lines; multiphase flow; porous media

Citation Formats

Mcclure, James E., Miller, Cass T., Gray, W. G., and Berrill, Mark A. Tracking interface and common curve dynamics for two-fluid flow in porous media. United States: N. p., 2016. Web. doi:10.1017/jfm.2016.212.
Mcclure, James E., Miller, Cass T., Gray, W. G., & Berrill, Mark A. Tracking interface and common curve dynamics for two-fluid flow in porous media. United States. https://doi.org/10.1017/jfm.2016.212
Mcclure, James E., Miller, Cass T., Gray, W. G., and Berrill, Mark A. Fri . "Tracking interface and common curve dynamics for two-fluid flow in porous media". United States. https://doi.org/10.1017/jfm.2016.212. https://www.osti.gov/servlets/purl/1255655.
@article{osti_1255655,
title = {Tracking interface and common curve dynamics for two-fluid flow in porous media},
author = {Mcclure, James E. and Miller, Cass T. and Gray, W. G. and Berrill, Mark A.},
abstractNote = {Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measures of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.},
doi = {10.1017/jfm.2016.212},
journal = {Journal of Fluid Mechanics},
number = ,
volume = 796,
place = {United States},
year = {Fri Apr 29 00:00:00 EDT 2016},
month = {Fri Apr 29 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media: NEW NETWORK MODEL FOR CAPILLARY FLOW
journal, June 2010

  • Joekar-Niasar, V.; Prodanović, M.; Wildenschild, D.
  • Water Resources Research, Vol. 46, Issue 6
  • DOI: 10.1029/2009WR008585

Incorporation of Line Quantities in the Continuum Description for Multiphase, Multicomponent Bodies with Intersecting Dividing Surfaces
journal, December 1995

  • Sagis, Leonard M. C.; Slattery, John C.
  • Journal of Colloid and Interface Science, Vol. 176, Issue 1
  • DOI: 10.1006/jcis.1995.0018

Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation
journal, April 1994


A model for two-phase flow in porous media including fluid-fluid interfacial area: TWO-PHASE FLOW IN POROUS MEDIA
journal, August 2008

  • Niessner, J.; Hassanizadeh, S. M.
  • Water Resources Research, Vol. 44, Issue 8
  • DOI: 10.1029/2007WR006721

Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 6. Two-fluid-phase flow
journal, June 2009


Spurious currents in finite element based level set methods for two-phase flow: SPURIOUS CURRENTS IN FINITE ELEMENT BASED LEVEL SET METHODS
journal, July 2011

  • Zahedi, Sara; Kronbichler, Martin; Kreiss, Gunilla
  • International Journal for Numerical Methods in Fluids, Vol. 69, Issue 9
  • DOI: 10.1002/fld.2643

Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems
book, January 2014

  • Gray, William G.; Miller, Cass T.
  • Advances in Geophysical and Environmental Mechanics and Mathematics
  • DOI: 10.1007/978-3-319-04010-3

A novel representation of the surface tension force for two-phase flow with reduced spurious currents
journal, September 2006

  • Aulisa, E.; Manservisi, S.; Scardovelli, R.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 195, Issue 44-47
  • DOI: 10.1016/j.cma.2005.12.006

Pore-Scale Modeling of Multiphase Flow and Transport: Achievements and Perspectives
journal, July 2012

  • Joekar-Niasar, V.; van Dijke, M. I. J.; Hassanizadeh, S. M.
  • Transport in Porous Media, Vol. 94, Issue 2
  • DOI: 10.1007/s11242-012-0047-4

Recent advances in pore scale models for multiphase flow in porous media
journal, July 1995

  • Celia, Michael A.; Reeves, Paul C.; Ferrand, Lin A.
  • Reviews of Geophysics, Vol. 33, Issue S2
  • DOI: 10.1029/95RG00248

Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography
journal, June 2014


The physics of moving wetting lines
journal, July 2006


A Functional Relationship Between Capillary Pressure, Saturation, and Interfacial Area as Revealed by a Pore-Scale Network Model
journal, August 1996

  • Reeves, Paul C.; Celia, Michael A.
  • Water Resources Research, Vol. 32, Issue 8
  • DOI: 10.1029/96WR01105

A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio
journal, June 2005


Pore-scale investigation of viscous coupling effects for two-phase flow in porous media
journal, August 2005


Linking pore-scale interfacial curvature to column-scale capillary pressure
journal, September 2012


Numerical simulation of water resources problems: Models, methods, and trends
journal, January 2013


Lattice Boltzmann method for moving boundaries
journal, January 2003


A novel heterogeneous algorithm to simulate multiphase flow in porous media on multicore CPU–GPU systems
journal, July 2014

  • McClure, J. E.; Prins, J. F.; Miller, C. T.
  • Computer Physics Communications, Vol. 185, Issue 7
  • DOI: 10.1016/j.cpc.2014.03.012

A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface
journal, October 1989

  • Luckner, L.; Van Genuchten, M. Th.; Nielsen, D. R.
  • Water Resources Research, Vol. 25, Issue 10
  • DOI: 10.1029/WR025i010p02187

Dynamics of partial wetting
journal, April 1992


Effect of dynamic contact angle on capillary rise phenomena
journal, January 2000

  • Siebold, Alain; Nardin, Michel; Schultz, Jacques
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 161, Issue 1
  • DOI: 10.1016/S0927-7757(99)00327-1

Computation of the interfacial area for two-fluid porous medium systems
journal, May 2002


Effect of fluid topology on residual nonwetting phase trapping: Implications for geologic CO2 sequestration
journal, December 2013


The role of scaling laws in upscaling
journal, May 2009


Comparison of pressure-saturation characteristics derived from computed tomography and lattice Boltzmann simulations: TOMOGRAPHY AND LB PRESSURE-SATURATION
journal, December 2007

  • Schaap, Marcel G.; Porter, Mark L.; Christensen, Britt S. B.
  • Water Resources Research, Vol. 43, Issue 12
  • DOI: 10.1029/2006WR005730

Shrinkage of bubbles and drops in the lattice Boltzmann equation method for nonideal gases
journal, March 2014


Flow in porous media II: The governing equations for immiscible, two-phase flow
journal, January 1986


Uniqueness of Specific Interfacial Area–Capillary Pressure–Saturation Relationship Under Non-Equilibrium Conditions in Two-Phase Porous Media Flow
journal, February 2012


Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids
journal, September 2009


Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases
journal, October 2006


Evaluation of Two Lattice Boltzmann Models for Multiphase Flows
journal, December 1997

  • Hou, Shuling; Shan, Xiaowen; Zou, Qisu
  • Journal of Computational Physics, Vol. 138, Issue 2
  • DOI: 10.1006/jcph.1997.5839

Contact-line dynamics of a diffuse fluid interface
journal, January 2000


Multirange multi-relaxation time Shan–Chen model with extended equilibrium
journal, April 2010


<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2001-02-01">February 2001</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Blunt, Martin; Hilpert, Markus</span> </li> <li> Advances in Water Resources, Vol. 24, Issue 3-4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0309-1708(00)00068-3" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0309-1708(00)00068-3<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1080/10618560701440915" target="_blank" rel="noopener noreferrer" class="name">An improved three-dimensional model for interface pressure calculations in free-surface flows<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-02-01">February 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Jafari, Ali; Shirani, Ebrahim; Ashgriz, Nasser</span> </li> <li> International Journal of Computational Fluid Dynamics, Vol. 21, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1080/10618560701440915" class="text-muted" target="_blank" rel="noopener noreferrer">10.1080/10618560701440915<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.advwatres.2012.03.003" target="_blank" rel="noopener noreferrer" class="name">Pore-scale imaging and modelling<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-01-01">January 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Blunt, Martin J.; Bijeljic, Branko; Dong, Hu</span> </li> <li> Advances in Water Resources, Vol. 51</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.advwatres.2012.03.003" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.advwatres.2012.03.003<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S0309-1708(00)00060-9" target="_blank" rel="noopener noreferrer" class="name">Modeling support of functional relationships between capillary pressure, saturation, interfacial area and common lines<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2001-02-01">February 2001</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Held, Rudolf J.; Celia, Michael A.</span> </li> <li> Advances in Water Resources, Vol. 24, Issue 3-4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0309-1708(00)00060-9" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0309-1708(00)00060-9<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s10596-009-9130-5" target="_blank" rel="noopener noreferrer" class="name">Image analysis algorithms for estimating porous media multiphase flow variables from computed microtomography data: a validation study<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2009-02-06">February 2009</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Porter, Mark L.; Wildenschild, Dorthe</span> </li> <li> Computational Geosciences, Vol. 14, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s10596-009-9130-5" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s10596-009-9130-5<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.advwatres.2004.09.006" target="_blank" rel="noopener noreferrer" class="name">Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 2. Foundation<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2005-02-01">February 2005</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Miller, Cass T.; Gray, William G.</span> </li> <li> Advances in Water Resources, Vol. 28, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.advwatres.2004.09.006" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.advwatres.2004.09.006<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.advwatres.2004.09.005" target="_blank" rel="noopener noreferrer" class="name">Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2005-02-01">February 2005</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Gray, William G.; Miller, Cass T.</span> </li> <li> Advances in Water Resources, Vol. 28, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.advwatres.2004.09.005" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.advwatres.2004.09.005<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevE.78.017702" target="_blank" rel="noopener noreferrer" class="name">Wall boundary conditions in the lattice Boltzmann equation method for nonideal gases<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2008-07-01">July 2008</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Lee, Taehun; Liu, Lin</span> </li> <li> Physical Review E, Vol. 78, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevE.78.017702" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevE.78.017702<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevA.45.5694" target="_blank" rel="noopener noreferrer" class="name">Immiscible-fluid displacement: Contact-line dynamics and the velocity-dependent capillary pressure<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1992-04-01">April 1992</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Sheng, Ping; Zhou, Minyao</span> </li> <li> Physical Review A, Vol. 45, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevA.45.5694" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevA.45.5694<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1017/S0022112010000704" target="_blank" rel="noopener noreferrer" class="name">Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2010-07-05">July 2010</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Joekar-Niasar, V.; Hassanizadeh, S. M.; Dahle, H. K.</span> </li> <li> Journal of Fluid Mechanics, Vol. 655</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1017/S0022112010000704" class="text-muted" target="_blank" rel="noopener noreferrer">10.1017/S0022112010000704<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevE.68.066614" target="_blank" rel="noopener noreferrer" class="name">Multireflection boundary conditions for lattice Boltzmann models<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2003-12-01">December 2003</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Ginzburg, Irina; d’Humières, Dominique</span> </li> <li> Physical Review E, Vol. 68, Issue 6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevE.68.066614" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevE.68.066614<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/2015WR016921" target="_blank" rel="noopener noreferrer" class="name">On the dynamics and kinematics of two‐fluid‐phase flow in porous media<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-07-01">July 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Gray, W. G.; Dye, A. L.; McClure, J. E.</span> </li> <li> Water Resources Research, Vol. 51, Issue 7</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/2015WR016921" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/2015WR016921<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevE.53.743" target="_blank" rel="noopener noreferrer" class="name">Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1996-01-01">January 1996</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Martys, Nicos S.; Chen, Hudong</span> </li> <li> Physical Review E, Vol. 53, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevE.53.743" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevE.53.743<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.advwatres.2009.08.009" target="_blank" rel="noopener noreferrer" class="name">Lattice-Boltzmann simulations of the capillary pressure–saturation–interfacial area relationship for porous media<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2009-11-01">November 2009</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Porter, Mark L.; Schaap, Marcel G.; Wildenschild, Dorthe</span> </li> <li> Advances in Water Resources, Vol. 32, Issue 11</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.advwatres.2009.08.009" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.advwatres.2009.08.009<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevE.72.046701" target="_blank" rel="noopener noreferrer" class="name">Static contact angle in lattice Boltzmann models of immiscible fluids<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2005-10-01">October 2005</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Latva-Kokko, M.; Rothman, Daniel H.</span> </li> <li> Physical Review E, Vol. 72, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevE.72.046701" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevE.72.046701<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.ces.2004.06.046" target="_blank" rel="noopener noreferrer" class="name">Extension of continuum mechanics to the nanoscale<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2004-11-01">November 2004</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Slattery, John C.; Oh, Eun-Suok; Fu, Kaibin</span> </li> <li> Chemical Engineering Science, Vol. 59, Issue 21</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.ces.2004.06.046" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.ces.2004.06.046<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1017/S0022112086000332" target="_blank" rel="noopener noreferrer" class="name">The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1986-07-01">July 1986</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Cox, R. G.</span> </li> <li> Journal of Fluid Mechanics, Vol. 168, Issue -1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1017/S0022112086000332" class="text-muted" target="_blank" rel="noopener noreferrer">10.1017/S0022112086000332<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0021-9797(91)90272-A" target="_blank" rel="noopener noreferrer" class="name">Analysis of the moving apparent common line and dynamic contact angle formed by a draining film<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1991-05-01">May 1991</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Li, Dongming; Slattery, John C.</span> </li> <li> Journal of Colloid and Interface Science, Vol. 143, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0021-9797(91)90272-A" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0021-9797(91)90272-A<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1029/2009WR007786" target="_blank" rel="noopener noreferrer" class="name">Measurement and prediction of the relationship between capillary pressure, saturation, and interfacial area in a NAPL-water-glass bead system: CAPILLARY PRESSURE, SATURATION, AND IFA<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2010-08-01">August 2010</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Porter, Mark L.; Wildenschild, Dorthe; Grant, Gavin</span> </li> <li> Water Resources Research, Vol. 46, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1029/2009WR007786" class="text-muted" target="_blank" rel="noopener noreferrer">10.1029/2009WR007786<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0020-7225(95)00141-7" target="_blank" rel="noopener noreferrer" class="name">Moving contact lines in the Cahn-Hilliard theory<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1996-07-01">July 1996</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Seppecher, Pierre</span> </li> <li> International Journal of Engineering Science, Vol. 34, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0020-7225(95)00141-7" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0020-7225(95)00141-7<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.compfluid.2005.03.008" target="_blank" rel="noopener noreferrer" class="name">An evaluation of lattice Boltzmann schemes for porous medium flow simulation<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-09-01">September 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Pan, Chongxun; Luo, Li-Shi; Miller, Cass T.</span> </li> <li> Computers & Fluids, Vol. 35, Issue 8-9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.compfluid.2005.03.008" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.compfluid.2005.03.008<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.jcp.2011.11.035" target="_blank" rel="noopener noreferrer" class="name">Mixed element FEM level set method for numerical simulation of immiscible fluids<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-03-01">March 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Hysing, S.</span> </li> <li> Journal of Computational Physics, Vol. 231, Issue 6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.jcp.2011.11.035" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.jcp.2011.11.035<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.advwatres.2006.06.010" target="_blank" rel="noopener noreferrer" class="name">Approximation of interfacial properties in multiphase porous medium systems<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-03-01">March 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> McClure, J. E.; Adalsteinsson, D.; Pan, C.</span> </li> <li> Advances in Water Resources, Vol. 30, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.advwatres.2006.06.010" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.advwatres.2006.06.010<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1142/S0129183107010887" target="_blank" rel="noopener noreferrer" class="name">A General Multiple-Relaxation-Time Boltzmann Collision Model<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-04-01">April 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Shan, Xiaowen; Chen, Hudong</span> </li> <li> International Journal of Modern Physics C, Vol. 18, Issue 04</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1142/S0129183107010887" class="text-muted" target="_blank" rel="noopener noreferrer">10.1142/S0129183107010887<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1017/S0022112096004569" target="_blank" rel="noopener noreferrer" class="name">Moving contact lines in liquid/liquid/solid systems<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1997-03-10">March 1997</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Shikhmurzaev, Yulii D.</span> </li> <li> Journal of Fluid Mechanics, Vol. 334</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1017/S0022112096004569" class="text-muted" target="_blank" rel="noopener noreferrer">10.1017/S0022112096004569<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1146/annurev.fluid.30.1.329" target="_blank" rel="noopener noreferrer" class="name">Lattice Boltzmann Method for Fluid Flows<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1998-01-01">January 1998</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Chen, Shiyi; Doolen, Gary D.</span> </li> <li> Annual Review of Fluid Mechanics, Vol. 30, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1146/annurev.fluid.30.1.329" class="text-muted" target="_blank" rel="noopener noreferrer">10.1146/annurev.fluid.30.1.329<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S0377-0257(97)00007-4" target="_blank" rel="noopener noreferrer" class="name">Common line motion I: implications of entropy inequality<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1997-08-01">August 1997</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Dhori, Pranab K.; Slattery, John C.</span> </li> <li> Journal of Non-Newtonian Fluid Mechanics, Vol. 71, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0377-0257(97)00007-4" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0377-0257(97)00007-4<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S1631-0721(02)01445-6" target="_blank" rel="noopener noreferrer" class="name">Recent progress in the moving contact line problem: a review<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2002-01-01">January 2002</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Pomeau, Yves</span> </li> <li> Comptes Rendus Mécanique, Vol. 330, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S1631-0721(02)01445-6" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S1631-0721(02)01445-6<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevLett.98.254503" target="_blank" rel="noopener noreferrer" class="name">Scaling of Dynamic Contact Angles in a Lattice-Boltzmann Model<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-06-01">June 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Latva-Kokko, M.; Rothman, Daniel H.</span> </li> <li> Physical Review Letters, Vol. 98, Issue 25</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevLett.98.254503" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevLett.98.254503<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.jcp.2013.01.014" target="_blank" rel="noopener noreferrer" class="name">Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-06-01">June 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Chang, Chih-Hao; Deng, Xiaolong; Theofanous, Theo G.</span> </li> <li> Journal of Computational Physics, Vol. 242</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.jcp.2013.01.014" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.jcp.2013.01.014<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevE.76.066701" target="_blank" rel="noopener noreferrer" class="name">Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-12-01">December 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Huang, Haibo; Thorne, Daniel T.; Schaap, Marcel G.</span> </li> <li> Physical Review E, Vol. 76, Issue 6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevE.76.066701" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevE.76.066701<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1029/2000WR900234" target="_blank" rel="noopener noreferrer" class="name">Pore-scale modeling extension of constitutive relationships in the range of residual saturations<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2001-01-01">January 2001</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Held, Rudolf J.; Celia, Michael A.</span> </li> <li> Water Resources Research, Vol. 37, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1029/2000WR900234" class="text-muted" target="_blank" rel="noopener noreferrer">10.1029/2000WR900234<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.jcp.2007.12.008" target="_blank" rel="noopener noreferrer" class="name">Numerical prediction of interfacial instabilities: Sharp interface method (SIM)<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2008-04-01">April 2008</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Nourgaliev, R. R.; Liou, M. -S.; Theofanous, T. G.</span> </li> <li> Journal of Computational Physics, Vol. 227, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.jcp.2007.12.008" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.jcp.2007.12.008<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s11242-007-9191-7" target="_blank" rel="noopener noreferrer" class="name">Insights into the Relationships Among Capillary Pressure, Saturation, Interfacial Area and Relative Permeability Using Pore-Network Modeling<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-12-11">December 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Joekar-Niasar, V.; Hassanizadeh, S. M.; Leijnse, A.</span> </li> <li> Transport in Porous Media, Vol. 74, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s11242-007-9191-7" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s11242-007-9191-7<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s11242-014-0338-z" target="_blank" rel="noopener noreferrer" class="name">Quantifying the Representative Size in Porous Media<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-05-30">May 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Ovaysi, Saeed; Wheeler, Mary F.; Balhoff, Matthew</span> </li> <li> Transport in Porous Media, Vol. 104, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s11242-014-0338-z" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s11242-014-0338-z<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.2118/749-G" target="_blank" rel="noopener noreferrer" class="name">Darcy's Law and the Field Equations of the Flow of Underground Fluids<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1956-12-01">December 1956</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Hubbert, M. King</span> </li> <li> Transactions of the AIME, Vol. 207, Issue 01</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.2118/749-G" class="text-muted" target="_blank" rel="noopener noreferrer">10.2118/749-G<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="book"><span class="fa fa-angle-right"></span> book<small class="text-muted"> (1)</small></a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (73)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_references" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-citations" class="tab-content tab-content-sec osti-curated" data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Works referencing / citing this record:</p> <div class="list"> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s11242-018-1023-4" target="_blank" rel="noopener noreferrer" class="name">A Three-Dimensional Model of Two-Phase Flows in a Porous Medium Accounting for Motion of the Liquid–Liquid Interface<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-03-03">March 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Shapiro, Alexander A.</span> </li> <li> Transport in Porous Media, Vol. 122, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s11242-018-1023-4" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s11242-018-1023-4<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1017/jfm.2017.720" target="_blank" rel="noopener noreferrer" class="name">Pore-scale modelling of Ostwald ripening<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-11-27">November 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> de Chalendar, Jacques A.; Garing, Charlotte; Benson, Sally M.</span> </li> <li> Journal of Fluid Mechanics, Vol. 835</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1017/jfm.2017.720" class="text-muted" target="_blank" rel="noopener noreferrer">10.1017/jfm.2017.720<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1029/2018wr024586" target="_blank" rel="noopener noreferrer" class="name">Nonhysteretic Capillary Pressure in Two‐Fluid Porous Medium Systems: Definition, Evaluation, Validation, and Dynamics<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-08-01">August 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Miller, C. T.; Bruning, K.; Talbot, C. L.</span> </li> <li> Water Resources Research, Vol. 55, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1029/2018wr024586" class="text-muted" target="_blank" rel="noopener noreferrer">10.1029/2018wr024586<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1073/pnas.1901619116" target="_blank" rel="noopener noreferrer" class="name">Comprehensive comparison of pore-scale models for multiphase flow in porous media<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-06-21">June 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Zhao, Benzhong; MacMinn, Christopher W.; Primkulov, Bauyrzhan K.</span> </li> <li> Proceedings of the National Academy of Sciences, Vol. 116, Issue 28</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1073/pnas.1901619116" class="text-muted" target="_blank" rel="noopener noreferrer">10.1073/pnas.1901619116<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevFluids.3.084306" target="_blank" rel="noopener noreferrer" class="name">Geometric state function for two-fluid flow in porous media<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-08-01">August 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> McClure, James E.; Armstrong, Ryan T.; Berrill, Mark A.</span> </li> <li> Physical Review Fluids, Vol. 3, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevFluids.3.084306" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevFluids.3.084306<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.3390/w11112260" target="_blank" rel="noopener noreferrer" class="name">Toward a New Generation of Two-Fluid Flow Models Based on the Thermodynamically-Constrained Averaging Theory<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-10-28">October 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Bruning, Kelsey; Miller, Cass T.</span> </li> <li> Water, Vol. 11, Issue 11</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.3390/w11112260" class="text-muted" target="_blank" rel="noopener noreferrer">10.3390/w11112260<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.5194/hess-21-1063-2017" target="_blank" rel="noopener noreferrer" class="name">On the consistency of scale among experiments, theory, and simulation<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-01-01">January 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> McClure, James E.; Dye, Amanda L.; Miller, Cass T.</span> </li> <li> Hydrology and Earth System Sciences, Vol. 21, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.5194/hess-21-1063-2017" class="text-muted" target="_blank" rel="noopener noreferrer">10.5194/hess-21-1063-2017<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.17615/z2kx-d081" target="_blank" rel="noopener noreferrer" class="name">On the consistency of scale among experiments, theory, and simulation<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">text</span>, <span class="date" data-date="2017-01-01">January 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> G., Gray, William; L., Dye, Amanda; T., Miller, Cass</span> </li> <li> The University of North Carolina at Chapel Hill University Libraries</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.17615/z2kx-d081" class="text-muted" target="_blank" rel="noopener noreferrer">10.17615/z2kx-d081<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.5194/hess-2016-451" target="_blank" rel="noopener noreferrer" class="name">On the Consistency of Scale Among Experiments, Theory, and Simulation<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-09-15">September 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> McClure, James E.; Dye, Amanda L.; Miller, Cass T.</span> </li> <li> Hydrology and Earth System Sciences Discussions</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.5194/hess-2016-451" class="text-muted" target="_blank" rel="noopener noreferrer">10.5194/hess-2016-451<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All Cited By</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (8)</small></a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="text"><span class="fa fa-angle-right"></span> text<small class="text-muted"> (1)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted citation-search"> <label for="citation-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="citation-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="citation-search-sort-name"><label for="citation-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="citation-search-sort-date"><label for="citation-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_citations" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar Records in DOE PAGES and OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1330524-influence-phase-connectivity-relationship-among-capillary-pressure-fluid-saturation-interfacial-area-two-fluid-phase-porous-medium-systems" itemprop="url">Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">McClure, James E.</span> ; <span class="author">Berrill, Mark A.</span> ; <span class="author">Gray, William G.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review E</span> </span> </div> <div class="abstract">Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, or<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 42<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1103/PhysRevE.94.033102" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1330524" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1103/PhysRevE.94.033102</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1330524" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1330524" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/881590-flow-mapping-gas-solid-riser-via-computer-automated-radioactive-particle-tracking-carpt" itemprop="url">Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Technical Report</small><span class="authors"> <span class="author">Al-Dahhan, Muthanna</span> ; <span class="author">Dudukovic, Milorad P</span> ; <span class="author">Bhusarapu, Satish</span> ; <span class="author">...</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemical<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at various planes. Together, these two techniques can provide the needed local solids flow dynamic information for the same setup under identical operating conditions, and the data obtained can be used as a benchmark for development, and refinement of the appropriate riser models. For the above reasons these two techniques were implemented in this study on a fully developed section of the riser. To derive the global mixing information in the riser, accurate solids RTD is needed and was obtained by monitoring the entry and exit of a single radioactive tracer. Other global parameters such as Cycle Time Distribution (CTD), overall solids holdup in the riser, solids recycle percentage at the bottom section of the riser were evaluated from different solids travel time distributions. Besides, to measure accurately and in-situ the overall solids mass flux, a novel method was applied.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.2172/881590" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="881590" data-product-type="Technical Report" data-product-subtype="" >https://doi.org/10.2172/881590</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/servlets/purl/881590" title="Link to document media" target="_blank" rel="noopener" data-ostiid="881590" data-product-type="Technical Report" data-product-subtype="" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/23042921-single-bubble-flow-boiling-phenomena-interface-tracking-simulation" itemprop="url">Single-Bubble Flow Boiling Phenomena - Interface Tracking Simulation</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Li, Mengnan</span> ; <span class="author">Bolotnov, Igor A.</span> <span class="text-muted pubdata"> - Transactions of the American Nuclear Society</span> </span> </div> <div class="abstract">Boiling, as one of the most efficient heat transfer mechanisms, is widely used in various engineering systems. Better understanding and modeling of this process remains a major challenge in multiphase flow research. The distribution of vapor in boiling system affects the heat transfer rate and may cause unfavorable conditions, such as heater burn-out. A number of flow regimes have been observed experimentally. In general, there are three regimes under boiling conditions: nucleate boiling, transition boiling, and film boiling. The nucleate boiling regime is categorized into partial boiling regime and fully developed nucleate boiling, according to behavior of bubble dynamics and<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> heat transfer characteristics. In the first region, as the wall temperature increases, the fraction of the wall surface subject to nucleate boiling increases until bubble formation occupies the entire heated surface. Heat transfer in this region is a complex mixture of single-phase forced convection and nucleate boiling. As bubble density increases, bubbles turn to coalesce and form insulating vapor patches, which impedes liquid flow back to the surface. The heat transfer rate under this condition reduces dramatically. This point is called Critical Heat Flux (CHF), which leads to boiling crisis. The behavior of boiling crisis is dependent on local fluid conditions due to bubble growth and departure. Experiments are the ultimate tool for boiling model development and verification, but they still lack some capabilities needed for better understanding of the local mechanism of this phenomena. It's difficult to capture many important details at the pressure/temperature conditions of interest using experimental techniques, such as full three dimensional measurements of velocity and temperature distribution and estimates of heat flux partitioning during the boiling process. The interface tracking simulation (ITS) is one of the promising approaches to describe heat transfer of boiling phenomena and their underlying mechanisms. The advances of high performance computing (HPC) in recent years made it possible to apply DNS to a wide variety of adiabatic flows. Some work has been done to implement evaporation / condensation models as well. Lee and Nydahl performed a numerical simulation of bubble growth and departure assuming that the bubble has the shape of a truncated sphere and a micro-layer exists during bubble growth. A 2-D cylindrical bubbles simulation has been done by Son with a simplified model to predict the heat flux in a thin liquid micro-layer. A direct simulation of 2D film boiling is conducted by Juric and Tryggvason. The film boiling, below critical pressure with a modified Level Set Method, is studied by Son and Dhir. Ose and Kunugi have developed a boiling and condensation model on subcooled boiling phenomena. Fuchs performed numerical simulations of bubble growth and departure considering wall conduction effects. Fully transient heat and fluid flow is modeled with a free surface of a rising bubble and a periodic calculation of the whole cycling of a growing, detaching, and rising bubble. Mukherjee and Kandikar have done a numerical simulation of an evaporating meniscus on a moving heated surface with level set method. The heat transfer associated with the advancing and receding contact angle has been studied. To develop the capability of physics-based boiling process, in the presented work the energy and momentum equations are coupled to simulate single-bubble growth scenarios. For a single bubble simulation in infinite liquid, the analytical solution exists and can be compared with the numerical results for verification purposes. The presented capabilities will be utilized in the large scale DNS of boiling flows in the future. The finite-element based code, PHASTA is used for the simulation. It is a parallel, hierarchic, higher-order accurate, adaptive, stabilized, transient analysis flow solver, which has been shown to be an effective tool for a wide range of single and two-phase flow problems. It has been shown to be highly scalable on top supercomputers ({approx}85% scaling on up to 3 million mesh partitions using a 92 billion element mesh . PHASTA has been shown to reliably predict the details of adiabatic bubbly flows as well as single-phase flows with heat transfer. To develop the capability of physics-based boiling process, in the presented work the energy and momentum equations are coupled to simulate a single-bubble growth scenario. For a single bubble growth in superheated water, the analytical solution exists and can be compared with the numerical results for verification purposes. The second-order accurate spatial and time discretization is used for the flow solver in the presented work. (authors)</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1891649-probing-interfacial-momentum-closures-two-phase-bubbly-flow-machine-learning-aided-methods" itemprop="url">Probing interfacial momentum closures in two-phase bubbly flow with machine learning-aided methods</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Conference</small><span class="authors"> <span class="author">Bao, Han</span> ; <span class="author">Zhang, Hongbin</span> ; <span class="author">Feng, Jinyong</span> ; <span class="author">...</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">Computational fluid dynamics (CFD) approach has already reached a high level of maturity for single-phase flows, however the development of closure models for two-phase flow requires additional attention. Multiphase CFD (M-CFD) methods resolve the conservation equations for mass, momentum and energy while differing in the approaches and strategies adopted in the physical closure models. The most widely adopted framework for M-CFD is the Eulerian-Eulerian two-fluid approach which assumes that all phases are co-existing inside each computational cell. For each fluid, the full set of conservation equations is solved; therefore, each fluid has a different velocity field. For adiabatic two-phase flow,<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> the mechanisms of the interfacial momentum transfer are modeled by the interfacial forces representing different physical mechanisms. One of the crucial issues in the development and application of two-fluid model is the understanding of the interfacial momentum closures which determines the bubble distribution and migration behaviors. Dedicated experiments are performed to support the physical understanding and drive the closures’ development. However, limitations exist due to the uncertainties in the experimental measurement and the simplified analytical assumptions which have difficulties on representing the complex non-linear flow fields. In this paper, a data-driven approach, Feature Similarity Measurement (FSM), is developed and proposed to resolve the challenges of modeling the interfacial forces closures. Case study is performed with two-phase flow scenarios where the high-fidelity experimental data is available. Within the Eulerian-Eulerian two-fluid framework, only momentum equations for gas and liquid phases are solved and reduced-order interfacial momentum closures are aided with FSM. Predictions of void fraction and velocity fields are analyzed and demonstrate the potential of machine learning-driven interfacial forces closures.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.13182/T122-32371" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1891649" data-product-type="Conference" data-product-subtype="" >https://doi.org/10.13182/T122-32371</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/servlets/purl/1891649" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1891649" data-product-type="Conference" data-product-subtype="" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1000532-discrete-equation-method-dem-fully-compressible-two-phase-flows-ducts-spatially-varying-cross-section" itemprop="url">The Discrete Equation Method (DEM) for Fully Compressible, Two-Phase Flows in Ducts of Spatially Varying Cross-Section</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Berry, R A</span> ; <span class="author">Saurel, R</span> ; <span class="author">LeMetayer, O</span> <span class="text-muted pubdata"> - Nuclear Engineering and Design</span> </span> </div> <div class="abstract">For the simulation of light water nuclear reactor coolant flows, general two-phase models (valid for all volume fractions) have been generally used which, while allowing for velocity disequilibrium, normally force pressure equilibrium between the phases (see, for example, the numerous models of this type described in H. Städtke, Gasdynamic Aspects of Two-Phase Flow, Wiley-VCH, 2006). These equations are not hyperbolic, their physical wave dynamics are incorrect, and their solution algorithms rely on dubious truncation error induced artificial viscosity to render them numerically well posed over a portion of the computational spectrum. The inherent problems of the traditional approach to multiphase<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> modeling, which begins with an averaged system of (ill-posed) partial differential equations (PDEs) which are then discretized to form a numerical scheme, are avoided by employing a new homogenization method known as the Discrete Equation Method (DEM) (R. Abgrall and R. Saurel, Discrete Equations for Physical and Numerical Compressible Multiphase Mixtures, J. Comp. Phys. 186, 361-396, 2003). This method results in well-posed hyperbolic systems, this property being important for transient flows. This also allows a clear treatment of non-conservative terms (terms involving interfacial variables and volume fraction gradients) permitting the solution of interface problems without conservation errors, this feature being important for the direct numerical simulation of two-phase flows. Unlike conventional methods, the averaged system of PDEs for the mixture are not used, and the DEM method directly obtains a well-posed discrete equation system from the single-phase conservation laws, producing a numerical scheme which accurately computes fluxes for arbitrary number of phases and solves non-conservative products. The method effectively uses a sequence of single phase Riemann problem solutions. Phase interactions are accounted for by Riemann solvers at each interface. Non-conservative terms are correctly approximated. Some of the closure relations missing from the traditional approach are automatically obtained. Lastly, the continuous equation system resulting from the discrete equations can be identified by taking the continuous limit with weak-wave assumptions. In this work, this approach is tested by constructing a DEM model for the flow of two compressible phases in 1-D ducts of spatially varying cross-section with explicit time integration. An analytical equation of state is included for both water vapor and liquid phases, and a realistic interphase mass transfer model is developed based on interphase heat transfer. A robust compliment of boundary conditions are developed and discussed. Though originally conceived as a first step toward implict time integration of the DEM method (to relieve time step size restrictions due to stiffness and to achieve tighter coupling of equations) in multidimensions, this model offers some unique capabilities for incorporation into next generation light water reactor safety analysis codes. We demonstrate, on a converging-diverging two-phase nozzle, that this well-posed, 2-pressure, 2-velocity DEM model can be integrated to a realistic and meaningful steady-state with both phases treated as compressible.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1016/j.nucengdes.2010.08.003" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1000532" data-product-type="Journal Article" data-product-subtype="AC" >https://doi.org/10.1016/j.nucengdes.2010.08.003</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9;"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator"/> <br/> <div class="col text-center mt-3"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.osti.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="col text-center small" style="margin-top: 0.5em;margin-bottom:2.0rem;"> <div class="row justify-content-center" style="color:white"> <div class="pure-menu pure-menu-horizontal" style='white-space:normal'> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="https://www.osti.gov/disclaim" class="pure-menu-link" target="_blank" ref="noopener noreferrer"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline d-print-none" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item" style='float:none;'><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span>Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item" style='float:none;'><a target="_blank" title="Vulnerability Disclosure Program" class="pure-menu-link" href="https://doe.responsibledisclosure.com/hc/en-us" rel="noopener noreferrer">Vulnerability Disclosure Program</a></li> <li class="d-block d-lg-none mb-1"></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.facebook.com/ostigov" target="_blank" class="pure-menu-link social ext fa fa-facebook" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Facebook</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://twitter.com/OSTIgov" target="_blank" class="pure-menu-link social ext fa fa-twitter" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Twitter</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.youtube.com/user/ostigov" target="_blank" class="pure-menu-link social ext fa fa-youtube-play" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Youtube</span></a></li> </ul> </div> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.240327.0205.css" rel="stylesheet"> <script src="/pages/js/pages.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- DOE PAGES v.240327.0205 --> </html>