skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

Abstract

Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

Authors:
 [1];  [1];  [2];  [2];  [3];  [1];  [1];  [4];  [4];  [5]
  1. Michigan State Univ., East Lansing, MI (United States)
  2. Zyvex Instruments, Richardson, TX (United States)
  3. Keithley Instruments, Inc., Cleveland, OH (United States)
  4. Howard Univ., Washington, D.C. (United States)
  5. NASA Goddard Space Flight Center, Greenbelt, MD (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1252695
Report Number(s):
SAND-2016-1052J
Journal ID: ISSN 0957-4484; 619144
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Nanotechnology
Additional Journal Information:
Journal Volume: 18; Journal Issue: 47; Journal ID: ISSN 0957-4484
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Jacobs, Benjamin W., Ayres, Virginia M., Stallcup, Richard E., Hartman, Alan, Tupta, Mary Ann, Baczewski, Andrew David, Crimp, Martin A., Halpern, Joshua B., He, Maoqi, and Shaw, Harry C. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs. United States: N. p., 2007. Web. doi:10.1088/0957-4484/18/47/475710.
Jacobs, Benjamin W., Ayres, Virginia M., Stallcup, Richard E., Hartman, Alan, Tupta, Mary Ann, Baczewski, Andrew David, Crimp, Martin A., Halpern, Joshua B., He, Maoqi, & Shaw, Harry C. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs. United States. doi:10.1088/0957-4484/18/47/475710.
Jacobs, Benjamin W., Ayres, Virginia M., Stallcup, Richard E., Hartman, Alan, Tupta, Mary Ann, Baczewski, Andrew David, Crimp, Martin A., Halpern, Joshua B., He, Maoqi, and Shaw, Harry C. Fri . "Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs". United States. doi:10.1088/0957-4484/18/47/475710. https://www.osti.gov/servlets/purl/1252695.
@article{osti_1252695,
title = {Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs},
author = {Jacobs, Benjamin W. and Ayres, Virginia M. and Stallcup, Richard E. and Hartman, Alan and Tupta, Mary Ann and Baczewski, Andrew David and Crimp, Martin A. and Halpern, Joshua B. and He, Maoqi and Shaw, Harry C.},
abstractNote = {Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.},
doi = {10.1088/0957-4484/18/47/475710},
journal = {Nanotechnology},
number = 47,
volume = 18,
place = {United States},
year = {2007},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Band parameters for nitrogen-containing semiconductors
journal, September 2003

  • Vurgaftman, I.; Meyer, J. R.
  • Journal of Applied Physics, Vol. 94, Issue 6
  • DOI: 10.1063/1.1600519

Heteroepitaxial wurtzite and zinc‐blende structure GaN grown by reactive‐ion molecular‐beam epitaxy: Growth kinetics, microstructure, and properties
journal, January 1993

  • Powell, R. C.; Lee, N. ‐E.; Kim, Y. ‐W.
  • Journal of Applied Physics, Vol. 73, Issue 1
  • DOI: 10.1063/1.353882

Native defects in gallium nitride
journal, June 1995


Gallium Nitride Nanowire Nanodevices
journal, February 2002

  • Huang, Yu; Duan, Xiangfeng; Cui, Yi
  • Nano Letters, Vol. 2, Issue 2
  • DOI: 10.1021/nl015667d

Logic Gates and Computation from Assembled Nanowire Building Blocks
journal, November 2001


Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods
journal, April 2003


Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices
journal, March 2003

  • Zhong, Zhaohui; Qian, Fang; Wang, Deli
  • Nano Letters, Vol. 3, Issue 3
  • DOI: 10.1021/nl034003w

Electronic and Structural Characteristics of Zinc-Blende Wurtzite Biphasic Homostructure GaN Nanowires
journal, May 2007

  • Jacobs, Benjamin W.; Ayres, Virginia M.; Petkov, Mihail P.
  • Nano Letters, Vol. 7, Issue 5
  • DOI: 10.1021/nl062871y

Investigations of heavy ion irradiation of gallium nitride nanowires and nanocircuits
journal, April 2006


Growth of GaN nanowires by direct reaction of Ga with NH3
journal, October 2001


Growth of large-scale GaN nanowires and tubes by direct reaction of Ga with NH3
journal, December 2000

  • He, Maoqi; Minus, Indira; Zhou, Piezhen
  • Applied Physics Letters, Vol. 77, Issue 23
  • DOI: 10.1063/1.1329863

GaN nanowire lasers with low lasing thresholds
journal, October 2005

  • Gradečak, Silvija; Qian, Fang; Li, Yat
  • Applied Physics Letters, Vol. 87, Issue 17
  • DOI: 10.1063/1.2115087

Crystallographic alignment of high-density gallium nitride nanowire arrays
journal, July 2004

  • Kuykendall, Tevye; Pauzauskie, Peter J.; Zhang, Yanfeng
  • Nature Materials, Vol. 3, Issue 8, p. 524-528
  • DOI: 10.1038/nmat1177

Carbon nanotube electronics
journal, December 2002


Electrical transport properties of individual gallium nitride nanowires synthesized by chemical-vapor-deposition
journal, May 2002

  • Kim, Jae-Ryoung; So, Hye Mi; Park, Jong Wan
  • Applied Physics Letters, Vol. 80, Issue 19
  • DOI: 10.1063/1.1478158

Disorder Effects in Focused-Ion-Beam-Deposited Pt Contacts on GaN Nanowires
journal, October 2005

  • Nam, C. Y.; Tham, D.; Fischer, J. E.
  • Nano Letters, Vol. 5, Issue 10
  • DOI: 10.1021/nl0515697

The fabrication technique and electrical properties of a free-standing GaN nanowire
journal, July 2005


Contact characteristics in GaN nanowire devices
journal, March 2006


Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes
journal, December 2001


Carbon Nanotubes as Schottky Barrier Transistors
journal, August 2002


Observation of Rotational Isomers I:  A ZEKE and Hole-Burning Spectroscopy Study of 3-Methoxyphenol
journal, December 2000

  • Ullrich, Susanne; Geppert, Wolf D.; Dessent, Caroline E. H.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 51
  • DOI: 10.1021/jp0024470

Electrical characterization of single GaN nanowires
journal, October 2005


Specific contact resistivity of nanowire devices
journal, January 2006

  • Stern, E.; Cheng, G.; Young, M. P.
  • Applied Physics Letters, Vol. 88, Issue 5
  • DOI: 10.1063/1.2163454

Gallium nitride nanowire nonvolatile memory device
journal, July 2006

  • Cha, Ho-Young; Wu, Huaqiang; Chae, Soodoo
  • Journal of Applied Physics, Vol. 100, Issue 2
  • DOI: 10.1063/1.2216488