skip to main content

DOE PAGESDOE PAGES

Title: Superconducting Bi 2Te: Pressure-induced universality in the (Bi 2) m(Bi 2Te 3) n series

Using high-pressure magnetotransport techniques we have discovered superconductivity in Bi 2Te, a member of the infinitely adaptive (Bi 2)m(Bi 2Te 3)n series, whose end members, Bi and Bi 2Te 3, can be tuned to display topological surface states or superconductivity. Bi 2Te has a maximum T c = 8.6 K at P = 14.5 GPa and goes through multiple high pressure phase transitions, ultimately collapsing into a bcc structure that suggests a universal behavior across the series. High-pressure magnetoresistance and Hall measurements suggest a semi-metal to metal transition near 5.4 GPa, which accompanies the hexagonal to intermediate phase transition seen via x-ray diffraction measurements. In addition, the linearity of H c2 (T) exceeds the Werthamer-Helfand-Hohenberg limit, even in the extreme spin-orbit scattering limit, yet is consistent with other strong spin-orbit materials. Furthermore, considering these results in combination with similar reports on strong spin-orbit scattering materials seen in the literature, we suggest the need for a new theory that can address the unconventional nature of their superconducting states.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [2]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of Alabama, Birmingham, AL (United States)
Publication Date:
Report Number(s):
LLNL-JRNL-679788
Journal ID: ISSN 2469-9950; PRBMDO
Grant/Contract Number:
AC52-07NA27344; NA0001974; FG02-99ER45775; AC02-06CH11357; NA0002014; 14-ERD-041; AC52- 07NA27344; NA0002006
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 93; Journal Issue: 9; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carnegie Institution for Science, Washington, DC (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1247284
Alternate Identifier(s):
OSTI ID: 1242586; OSTI ID: 1364610