skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

Abstract

Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengths corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.

Authors:
 [1];  [2];  [3];  [3];  [1];  [3];  [4];  [4];  [5];  [6];  [1];  [1]
  1. Friedrich-Schiller-Univ. Jena, Jena (Germany); Helmholtz-Institute Jena, Jena (Germany)
  2. Friedrich-Schiller-Univ. Jena, Jena (Germany); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Friedrich-Schiller-Univ. Jena, Jena (Germany)
  4. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  5. National Research Council of Canada, Ottawa, ON (Canada); Ben-Gurion Univ., Beer-Sheva (Israel)
  6. National Research Council of Canada, Ottawa, ON (Canada)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1240088
Grant/Contract Number:  
AC03-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; imaging and sensing; microscopy; X-rays

Citation Formats

Fuchs, Silvio, Rödel, Christian, Blinne, Alexander, Zastrau, Ulf, Wünsche, Martin, Hilbert, Vinzenz, Glaser, Leif, Viefhaus, Jens, Frumker, Eugene, Corkum, Paul, Förster, Eckhart, and Paulus, Gerhard G. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation. United States: N. p., 2016. Web. doi:10.1038/srep20658.
Fuchs, Silvio, Rödel, Christian, Blinne, Alexander, Zastrau, Ulf, Wünsche, Martin, Hilbert, Vinzenz, Glaser, Leif, Viefhaus, Jens, Frumker, Eugene, Corkum, Paul, Förster, Eckhart, & Paulus, Gerhard G. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation. United States. doi:10.1038/srep20658.
Fuchs, Silvio, Rödel, Christian, Blinne, Alexander, Zastrau, Ulf, Wünsche, Martin, Hilbert, Vinzenz, Glaser, Leif, Viefhaus, Jens, Frumker, Eugene, Corkum, Paul, Förster, Eckhart, and Paulus, Gerhard G. Wed . "Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation". United States. doi:10.1038/srep20658. https://www.osti.gov/servlets/purl/1240088.
@article{osti_1240088,
title = {Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation},
author = {Fuchs, Silvio and Rödel, Christian and Blinne, Alexander and Zastrau, Ulf and Wünsche, Martin and Hilbert, Vinzenz and Glaser, Leif and Viefhaus, Jens and Frumker, Eugene and Corkum, Paul and Förster, Eckhart and Paulus, Gerhard G.},
abstractNote = {Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengths corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.},
doi = {10.1038/srep20658},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = {2016},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation
journal, March 2012


Performance of fourier domain vs time domain optical coherence tomography
journal, January 2003

  • Leitgeb, R.; Hitzenberger, C.; Fercher, Adolf
  • Optics Express, Vol. 11, Issue 8
  • DOI: 10.1364/OE.11.000889

Ultrahigh resolution Fourier domain optical coherence tomography
journal, January 2004


An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers
journal, September 2013

  • Hilbert, Vinzenz; Blinne, Alexander; Fuchs, Silvio
  • Review of Scientific Instruments, Vol. 84, Issue 9
  • DOI: 10.1063/1.4821146

The attosecond nonlinear optics of bright coherent X-ray generation
journal, November 2010


Broader view on extreme ultraviolet masks: adding complementary imaging modes to the SHARP microscope
journal, January 2015

  • Benk, Markus P.; Miyakawa, Ryan H.; Chao, Weilun
  • Journal of Micro/Nanolithography, MEMS, and MOEMS, Vol. 14, Issue 1
  • DOI: 10.1117/1.JMM.14.1.013507

High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities
journal, October 2014

  • Frassetto, F.; Trabattoni, A.; Anumula, S.
  • Review of Scientific Instruments, Vol. 85, Issue 10
  • DOI: 10.1063/1.4898671

Real-time and Sub-wavelength Ultrafast Coherent Diffraction Imaging in the Extreme Ultraviolet
journal, December 2014

  • Zürch, M.; Rothhardt, J.; Hädrich, S.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep07356

X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92
journal, July 1993

  • Henke, B. L.; Gullikson, E. M.; Davis, J. C.
  • Atomic Data and Nuclear Data Tables, Vol. 54, Issue 2, p. 181-342
  • DOI: 10.1006/adnd.1993.1013

Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging
journal, July 2003

  • Wang, Yuxin; Yun, Wenbing; Jacobsen, Chris
  • Nature, Vol. 424, Issue 6944, p. 50-53
  • DOI: 10.1038/nature01756

High-energy attosecond light sources
journal, September 2011


Common-path interferometer for frequency-domain optical coherence tomography
journal, January 2003

  • Vakhtin, Andrei B.; Kane, Daniel J.; Wood, William R.
  • Applied Optics, Vol. 42, Issue 34
  • DOI: 10.1364/AO.42.006953

Massively parallel X-ray holography
journal, August 2008

  • Marchesini, Stefano; Boutet, Sébastien; Sakdinawat, Anne E.
  • Nature Photonics, Vol. 2, Issue 9
  • DOI: 10.1038/nphoton.2008.154

A single‐shot spectrograph for the soft x‐ray region
journal, May 1994

  • Jasny, J.; Teubner, U.; Theobald, W.
  • Review of Scientific Instruments, Vol. 65, Issue 5
  • DOI: 10.1063/1.1144851

Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape
journal, January 2015

  • Bierbach, Jana; Yeung, Mark; Eckner, Erich
  • Optics Express, Vol. 23, Issue 9
  • DOI: 10.1364/OE.23.012321

Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices
journal, February 2005

  • Walecki, Wojtek J.; Lai, Kevin; Souchkov, Vitalij
  • physica status solidi (c), Vol. 2, Issue 3
  • DOI: 10.1002/pssc.200460606

Evaluation of Age-related Macular Degeneration With Optical Coherence Tomography
journal, September 2012


Soft X-ray microscopy at a spatial resolution better than 15 nm
journal, June 2005

  • Chao, Weilun; Harteneck, Bruce D.; Liddle, J. Alexander
  • Nature, Vol. 435, Issue 7046
  • DOI: 10.1038/nature03719

Coherent lensless X-ray imaging
journal, November 2010


First results from the high resolution XUV undulator beamline BW3 at HASYLAB
journal, January 1994

  • Larsson, C. U. S.; Beutler, A.; Björneholm, O.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 337, Issue 2-3
  • DOI: 10.1016/0168-9002(94)91133-9

Application of optical coherence tomography (OCT) as a 3-dimensional imaging technique for roll-to-roll coated polymer solar cells
journal, February 2012


Optical coherence tomography
journal, November 1991


    Works referencing / citing this record:

    A high resolution extreme ultraviolet spectrometer system optimized for harmonic spectroscopy and XUV beam analysis
    journal, February 2019

    • Wünsche, Martin; Fuchs, Silvio; Weber, Thomas
    • Review of Scientific Instruments, Vol. 90, Issue 2
    • DOI: 10.1063/1.5054116