DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions

Abstract

© 2016 The Authors. Reoxidation and mobilization of previously reduced and immobilized uranium by dissolved-phase oxidants poses a significant challenge for remediating uranium-contaminated groundwater. Preferential oxidation of reduced sulfur-bearing species, as opposed to reduced uranium-bearing species, has been demonstrated to limit the mobility of uranium at the laboratory scale yet field-scale investigations are lacking. In this study, the mobility of uranium in the presence of nitrate oxidant was investigated in a shallow groundwater system after establishing conditions conducive to uranium reduction and the formation of reduced sulfur-bearing species. A series of three injections of groundwater (200 L) containing U(VI) (5 μM) and amended with ethanol (40 mM) and sulfate (20 mM) were conducted in ten test wells in order to stimulate microbial-mediated reduction of uranium and the formation of reduced sulfur-bearing species. Simultaneous push-pull tests were then conducted in triplicate well clusters to investigate the mobility of U(VI) under three conditions: 1) high nitrate (120 mM), 2) high nitrate (120 mM) with ethanol (30 mM), and 3) low nitrate (2 mM) with ethanol (30 mM). Dilution-adjusted breakthrough curves of ethanol, nitrate, nitrite, sulfate, and U(VI) suggested that nitrate reduction was predominantly coupled to the oxidation of reduced-sulfur bearing species, asmore » opposed to the reoxidation of U(IV), under all three conditions for the duration of the 36-day tests. The amount of sulfate, but not U(VI), recovered during the push-pull tests was substantially more than injected, relative to bromide tracer, under all three conditions and further suggested that reduced sulfur-bearing species were preferentially oxidized under nitrate-reducing conditions. However, some reoxidation of U(IV) was observed under nitrate-reducing conditions and in the absence of detectable nitrate and/or nitrite. This suggested that reduced sulfur-bearing species may not be fully effective at limiting the mobility of uranium in the presence of dissolved and/or solid-phase oxidants. The results of this field study confirmed those of previous laboratory studies which suggested that reoxidation of uranium under nitrate-reducing conditions can be substantially limited by preferential oxidation of reduced sulfur-bearing species.« less

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); ENIGMA
OSTI Identifier:
1237977
Alternate Identifier(s):
OSTI ID: 1328295; OSTI ID: 1480718
Grant/Contract Number:  
FG03-02ER63443; FC02-96ER62278; AC02-05CH11231; AC05-00OR22725
Resource Type:
Published Article
Journal Name:
Journal of Contaminant Hydrology
Additional Journal Information:
Journal Name: Journal of Contaminant Hydrology Journal Volume: 187 Journal Issue: C; Journal ID: ISSN 0169-7722
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 54 ENVIRONMENTAL SCIENCES; Uranium; Reduction; Oxidation; Mobility; Nitrate; Sulfate

Citation Formats

Paradis, Charles J., Jagadamma, Sindhu, Watson, David B., McKay, Larry D., Hazen, Terry C., Park, Melora, and Istok, Jonathan D. In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions. Netherlands: N. p., 2016. Web. doi:10.1016/j.jconhyd.2016.02.002.
Paradis, Charles J., Jagadamma, Sindhu, Watson, David B., McKay, Larry D., Hazen, Terry C., Park, Melora, & Istok, Jonathan D. In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions. Netherlands. https://doi.org/10.1016/j.jconhyd.2016.02.002
Paradis, Charles J., Jagadamma, Sindhu, Watson, David B., McKay, Larry D., Hazen, Terry C., Park, Melora, and Istok, Jonathan D. Fri . "In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions". Netherlands. https://doi.org/10.1016/j.jconhyd.2016.02.002.
@article{osti_1237977,
title = {In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions},
author = {Paradis, Charles J. and Jagadamma, Sindhu and Watson, David B. and McKay, Larry D. and Hazen, Terry C. and Park, Melora and Istok, Jonathan D.},
abstractNote = {© 2016 The Authors. Reoxidation and mobilization of previously reduced and immobilized uranium by dissolved-phase oxidants poses a significant challenge for remediating uranium-contaminated groundwater. Preferential oxidation of reduced sulfur-bearing species, as opposed to reduced uranium-bearing species, has been demonstrated to limit the mobility of uranium at the laboratory scale yet field-scale investigations are lacking. In this study, the mobility of uranium in the presence of nitrate oxidant was investigated in a shallow groundwater system after establishing conditions conducive to uranium reduction and the formation of reduced sulfur-bearing species. A series of three injections of groundwater (200 L) containing U(VI) (5 μM) and amended with ethanol (40 mM) and sulfate (20 mM) were conducted in ten test wells in order to stimulate microbial-mediated reduction of uranium and the formation of reduced sulfur-bearing species. Simultaneous push-pull tests were then conducted in triplicate well clusters to investigate the mobility of U(VI) under three conditions: 1) high nitrate (120 mM), 2) high nitrate (120 mM) with ethanol (30 mM), and 3) low nitrate (2 mM) with ethanol (30 mM). Dilution-adjusted breakthrough curves of ethanol, nitrate, nitrite, sulfate, and U(VI) suggested that nitrate reduction was predominantly coupled to the oxidation of reduced-sulfur bearing species, as opposed to the reoxidation of U(IV), under all three conditions for the duration of the 36-day tests. The amount of sulfate, but not U(VI), recovered during the push-pull tests was substantially more than injected, relative to bromide tracer, under all three conditions and further suggested that reduced sulfur-bearing species were preferentially oxidized under nitrate-reducing conditions. However, some reoxidation of U(IV) was observed under nitrate-reducing conditions and in the absence of detectable nitrate and/or nitrite. This suggested that reduced sulfur-bearing species may not be fully effective at limiting the mobility of uranium in the presence of dissolved and/or solid-phase oxidants. The results of this field study confirmed those of previous laboratory studies which suggested that reoxidation of uranium under nitrate-reducing conditions can be substantially limited by preferential oxidation of reduced sulfur-bearing species.},
doi = {10.1016/j.jconhyd.2016.02.002},
journal = {Journal of Contaminant Hydrology},
number = C,
volume = 187,
place = {Netherlands},
year = {Fri Apr 01 00:00:00 EDT 2016},
month = {Fri Apr 01 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.jconhyd.2016.02.002

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Summary of biostimulation and reoxidation test methodology. EtOH = ethanol. 161

Save / Share: