skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

Abstract

The composition of PM1 (particulate matter with diameter less than 1 µm) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that themore » biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer) only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS) at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have undergone similar chemical processing as rBC in the atmosphere. Although the atomic O : C ratio of OOA is substantially larger than that of solid fuel OA and hydrocarbon-like OA, these three factors have similar volatility, which is inferred from the change in mass concentration after heating at 120 °C. Finally, we discuss the relationship between the mass fraction remaining (MFR) of OA after heating in the TD and atomic O : C of OA and find that particles with a wide range of O : C could have similar MFR after heating. This analysis emphasizes the importance of understanding the distribution of volatility and O : C in bulk OA.« less

Authors:
; ; ; ORCiD logo; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1236649
Grant/Contract Number:  
SC000602
Resource Type:
Published Article
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online) Journal Volume: 16 Journal Issue: 2; Journal ID: ISSN 1680-7324
Publisher:
Copernicus Publications, EGU
Country of Publication:
Germany
Language:
English

Citation Formats

Xu, L., Williams, L. R., Young, D. E., Allan, J. D., Coe, H., Massoli, P., Fortner, E., Chhabra, P., Herndon, S., Brooks, W. A., Jayne, J. T., Worsnop, D. R., Aiken, A. C., Liu, S., Gorkowski, K., Dubey, M. K., Fleming, Z. L., Visser, S., Prévôt, A. S. H., and Ng, N. L. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area. Germany: N. p., 2016. Web. https://doi.org/10.5194/acp-16-1139-2016.
Xu, L., Williams, L. R., Young, D. E., Allan, J. D., Coe, H., Massoli, P., Fortner, E., Chhabra, P., Herndon, S., Brooks, W. A., Jayne, J. T., Worsnop, D. R., Aiken, A. C., Liu, S., Gorkowski, K., Dubey, M. K., Fleming, Z. L., Visser, S., Prévôt, A. S. H., & Ng, N. L. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area. Germany. https://doi.org/10.5194/acp-16-1139-2016
Xu, L., Williams, L. R., Young, D. E., Allan, J. D., Coe, H., Massoli, P., Fortner, E., Chhabra, P., Herndon, S., Brooks, W. A., Jayne, J. T., Worsnop, D. R., Aiken, A. C., Liu, S., Gorkowski, K., Dubey, M. K., Fleming, Z. L., Visser, S., Prévôt, A. S. H., and Ng, N. L. Tue . "Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area". Germany. https://doi.org/10.5194/acp-16-1139-2016.
@article{osti_1236649,
title = {Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area},
author = {Xu, L. and Williams, L. R. and Young, D. E. and Allan, J. D. and Coe, H. and Massoli, P. and Fortner, E. and Chhabra, P. and Herndon, S. and Brooks, W. A. and Jayne, J. T. and Worsnop, D. R. and Aiken, A. C. and Liu, S. and Gorkowski, K. and Dubey, M. K. and Fleming, Z. L. and Visser, S. and Prévôt, A. S. H. and Ng, N. L.},
abstractNote = {The composition of PM1 (particulate matter with diameter less than 1 µm) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer) only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS) at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have undergone similar chemical processing as rBC in the atmosphere. Although the atomic O : C ratio of OOA is substantially larger than that of solid fuel OA and hydrocarbon-like OA, these three factors have similar volatility, which is inferred from the change in mass concentration after heating at 120 °C. Finally, we discuss the relationship between the mass fraction remaining (MFR) of OA after heating in the TD and atomic O : C of OA and find that particles with a wide range of O : C could have similar MFR after heating. This analysis emphasizes the importance of understanding the distribution of volatility and O : C in bulk OA.},
doi = {10.5194/acp-16-1139-2016},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 2,
volume = 16,
place = {Germany},
year = {2016},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/acp-16-1139-2016

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions
journal, August 2012

  • Donahue, N. M.; Henry, K. M.; Mentel, T. F.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 34
  • DOI: 10.1073/pnas.1115186109

Chemical mass balance of 300 °C non-volatile particles at the tropospheric research site Melpitz, Germany
journal, January 2014


Investigating a two-component model of solid fuel organic aerosol in London: processes, PM 1 contributions, and seasonality
journal, January 2015

  • Young, D. E.; Allan, J. D.; Williams, P. I.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 5
  • DOI: 10.5194/acp-15-2429-2015

Long-term volatility measurements of submicron atmospheric aerosol in Hyytiälä, Finland
journal, January 2012

  • Häkkinen, S. A. K.; Äijälä, M.; Lehtipalo, K.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 22
  • DOI: 10.5194/acp-12-10771-2012

Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra
journal, January 2007

  • Lanz, V. A.; Alfarra, M. R.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 6
  • DOI: 10.5194/acp-7-1503-2007

Measurement of Inherent Material Density of Nanoparticle Agglomerates
journal, June 2004


Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber
journal, January 2011

  • Tritscher, T.; Dommen, J.; DeCarlo, P. F.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 22
  • DOI: 10.5194/acp-11-11477-2011

Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry
journal, January 2010

  • Ng, N. L.; Canagaratna, M. R.; Zhang, Q.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 10
  • DOI: 10.5194/acp-10-4625-2010

Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: results from the CENICA Supersite
journal, January 2006

  • Salcedo, D.; Onasch, T. B.; Dzepina, K.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 4
  • DOI: 10.5194/acp-6-925-2006

Volatility of secondary organic aerosol from the ozonolysis of monoterpenes
journal, May 2011


Source apportionment of fine particles at urban background and rural sites in the UK atmosphere
journal, February 2010


Organic nitrate and secondary organic aerosol yield from NO 3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model
journal, January 2009

  • Fry, J. L.; Kiendler-Scharr, A.; Rollins, A. W.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 4
  • DOI: 10.5194/acp-9-1431-2009

A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics
journal, January 2011

  • Donahue, N. M.; Epstein, S. A.; Pandis, S. N.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 7
  • DOI: 10.5194/acp-11-3303-2011

Kerb and urban increment of highly time-resolved trace elements in PM 10 , PM 2.5 and PM 1.0 winter aerosol in London during ClearfLo 2012
journal, January 2015

  • Visser, S.; Slowik, J. G.; Furger, M.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 5
  • DOI: 10.5194/acp-15-2367-2015

Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations
journal, January 2012

  • Baumgardner, D.; Popovicheva, O.; Allan, J.
  • Atmospheric Measurement Techniques, Vol. 5, Issue 8
  • DOI: 10.5194/amt-5-1869-2012

Meteorology, Air Quality, and Health in London: The ClearfLo Project
journal, May 2015

  • Bohnenstengel, S. I.; Belcher, S. E.; Aiken, A.
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 5
  • DOI: 10.1175/BAMS-D-12-00245.1

Elemental Analysis of Organic Species with Electron Ionization High-Resolution Mass Spectrometry
journal, November 2007

  • Aiken, Allison C.; DeCarlo, Peter F.; Jimenez, Jose L.
  • Analytical Chemistry, Vol. 79, Issue 21
  • DOI: 10.1021/ac071150w

Soot Particle Aerosol Mass Spectrometer: Development, Validation, and Initial Application
journal, July 2012


Aerosol volatility measurement using an improved thermodenuder: Application to secondary organic aerosol
journal, March 2007


Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign: AEROSOL COMPOSITION IN PASADENA
journal, August 2013

  • Hayes, P. L.; Ortega, A. M.; Cubison, M. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 16
  • DOI: 10.1002/jgrd.50530

Characterization of black carbon-containing particles from soot particle aerosol mass spectrometer measurements on the R/V Atlantis during CalNex 2010
journal, March 2015

  • Massoli, Paola; Onasch, Timothy B.; Cappa, Christopher D.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 6
  • DOI: 10.1002/2014JD022834

Can secondary organic aerosol formed in an atmospheric simulation chamber continuously age?
journal, August 2010


A weighted non-negative least squares algorithm for three-way ‘PARAFAC’ factor analysis
journal, October 1997


Sensitivity of the Single Particle Soot Photometer to different black carbon types
journal, January 2012

  • Laborde, M.; Mertes, P.; Zieger, P.
  • Atmospheric Measurement Techniques, Vol. 5, Issue 5
  • DOI: 10.5194/amt-5-1031-2012

Airborne determination of the temporo-spatial distribution of benzene, toluene, nitrogen oxides and ozone in the boundary layer across Greater London, UK
journal, January 2015

  • Shaw, M. D.; Lee, J. D.; Davison, B.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 9
  • DOI: 10.5194/acp-15-5083-2015

Enhanced light absorption by mixed source black and brown carbon particles in UK winter
journal, September 2015

  • Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9435

Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States
journal, December 2014

  • Xu, Lu; Guo, Hongyu; Boyd, Christopher M.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 1
  • DOI: 10.1073/pnas.1417609112

Quantitative estimates of the volatility of ambient organic aerosol
journal, January 2010


Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber
journal, January 2011

  • Hennigan, C. J.; Miracolo, M. A.; Engelhart, G. J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 15
  • DOI: 10.5194/acp-11-7669-2011

Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data
journal, March 2012


Volatility of organic aerosol and its components in the Megacity of Paris
journal, January 2015

  • Paciga, A.; Karnezi, E.; Kostenidou, E.
  • Atmospheric Chemistry and Physics Discussions, Vol. 15, Issue 16
  • DOI: 10.5194/acpd-15-22263-2015

Secondary organic aerosol formation from the β-pinene+NO 3 system: effect of humidity and peroxy radical fate
journal, January 2015


Mixing ratios and eddy covariance flux measurements of volatile organic compounds from an urban canopy (Manchester, UK)
journal, January 2009

  • Langford, B.; Davison, B.; Nemitz, E.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 6
  • DOI: 10.5194/acp-9-1971-2009

In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity
journal, January 2015

  • Beekmann, M.; Prévôt, A. S. H.; Drewnick, F.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 16
  • DOI: 10.5194/acp-15-9577-2015

Measurements of the Volatility of Aerosols from α-Pinene Ozonolysis
journal, April 2007

  • Stanier, Charles O.; Pathak, Ravi K.; Pandis, Spyros N.
  • Environmental Science & Technology, Vol. 41, Issue 8
  • DOI: 10.1021/es0519280

Sources and contributions of wood smoke during winter in London: assessing local and regional influences
journal, January 2015

  • Crilley, L. R.; Bloss, W. J.; Yin, J.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 6
  • DOI: 10.5194/acp-15-3149-2015

Chemically-resolved aerosol volatility measurements from two megacity field studies
journal, January 2009

  • Huffman, J. A.; Docherty, K. S.; Aiken, A. C.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 18
  • DOI: 10.5194/acp-9-7161-2009

Relationship between Particle Mass and Mobility for Diesel Exhaust Particles
journal, February 2003

  • Park, Kihong; Cao, Feng; Kittelson, David B.
  • Environmental Science & Technology, Vol. 37, Issue 3
  • DOI: 10.1021/es025960v

Equilibration time scales of organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics
journal, February 2010


Airborne measurements of trace gases and aerosols over the London metropolitan region
journal, January 2012

  • McMeeking, G. R.; Bart, M.; Chazette, P.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 11
  • DOI: 10.5194/acp-12-5163-2012

Processing of biomass-burning aerosol in the eastern Mediterranean during summertime
journal, January 2014

  • Bougiatioti, A.; Stavroulas, I.; Kostenidou, E.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 9
  • DOI: 10.5194/acp-14-4793-2014

O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry
journal, June 2008

  • Aiken, Allison C.; DeCarlo, Peter F.; Kroll, Jesse H.
  • Environmental Science & Technology, Vol. 42, Issue 12
  • DOI: 10.1021/es703009q

Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol
journal, January 2009

  • Kroll, Jesse H.; Smith, Jared D.; Che, Dung L.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 36
  • DOI: 10.1039/b905289e

Volatility of Organic Molecular Markers Used for Source Apportionment Analysis: Measurements and Implications for Atmospheric Lifetime
journal, October 2012

  • May, Andrew A.; Saleh, Rawad; Hennigan, Christopher J.
  • Environmental Science & Technology, Vol. 46, Issue 22
  • DOI: 10.1021/es302276t

Receptor modelling of secondary and carbonaceous particulate matter at a southern UK site
journal, January 2013

  • Charron, A.; Degrendele, C.; Laongsri, B.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 4
  • DOI: 10.5194/acp-13-1879-2013

Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment – 2008
journal, January 2010

  • Hildebrandt, L.; Engelhart, G. J.; Mohr, C.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 9
  • DOI: 10.5194/acp-10-4167-2010

Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data
journal, January 2009

  • Ulbrich, I. M.; Canagaratna, M. R.; Zhang, Q.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 9
  • DOI: 10.5194/acp-9-2891-2009

Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer
journal, January 2007

  • Canagaratna, M. R.; Jayne, J. T.; Jimenez, J. L.
  • Mass Spectrometry Reviews, Vol. 26, Issue 2
  • DOI: 10.1002/mas.20115

The formation, properties and impact of secondary organic aerosol: current and emerging issues
journal, January 2009

  • Hallquist, M.; Wenger, J. C.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-5155-2009

Volatility of secondary organic aerosols from the ozone initiated oxidation of -pinene and limonene
journal, August 2007


Ambient black carbon particle hygroscopic properties controlled by mixing state and composition
journal, January 2013


Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry
journal, March 2010

  • Farmer, D. K.; Matsunaga, A.; Docherty, K. S.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 15
  • DOI: 10.1073/pnas.0912340107

Contribution of Nitrated Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United Kingdom during Winter Time
journal, May 2013

  • Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Zotter, Peter
  • Environmental Science & Technology, Vol. 47, Issue 12
  • DOI: 10.1021/es400683v

Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer
journal, December 2006

  • DeCarlo, Peter F.; Kimmel, Joel R.; Trimborn, Achim
  • Analytical Chemistry, Vol. 78, Issue 24
  • DOI: 10.1021/ac061249n

Photochemical processing of aqueous atmospheric brown carbon
journal, January 2015


Spatial and seasonal trends in particle concentration and optical extinction in the United States
journal, January 1994

  • Malm, William C.; Sisler, James F.; Huffman, Dale
  • Journal of Geophysical Research, Vol. 99, Issue D1
  • DOI: 10.1029/93JD02916

Determination of Evaporation Coefficients of Ambient and Laboratory-Generated Semivolatile Organic Aerosols from Phase Equilibration Kinetics in a Thermodenuder
journal, January 2012


Using Elemental Ratios to Predict the Density of Organic Material Composed of Carbon, Hydrogen, and Oxygen
journal, December 2011

  • Kuwata, Mikinori; Zorn, Soeren R.; Martin, Scot T.
  • Environmental Science & Technology, Vol. 46, Issue 2
  • DOI: 10.1021/es202525q

Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London
journal, January 2015

  • Young, D. E.; Allan, J. D.; Williams, P. I.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 11
  • DOI: 10.5194/acp-15-6351-2015

Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere
journal, January 2006

  • Schwarz, J. P.; Gao, R. S.; Fahey, D. W.
  • Journal of Geophysical Research, Vol. 111, Issue D16
  • DOI: 10.1029/2006JD007076

Real-Time, Single-Particle Measurements of Oligomers in Aged Ambient Aerosol Particles
journal, August 2007

  • Denkenberger, Kerri A.; Moffet, Ryan C.; Holecek, John C.
  • Environmental Science & Technology, Vol. 41, Issue 15
  • DOI: 10.1021/es070329l

Particle identification by laser-induced incandescence in a solid-state laser cavity
journal, January 2003

  • Stephens, Michelle; Turner, Nelson; Sandberg, Jon
  • Applied Optics, Vol. 42, Issue 19
  • DOI: 10.1364/AO.42.003726

Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris
journal, January 2013

  • Crippa, M.; DeCarlo, P. F.; Slowik, J. G.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 2
  • DOI: 10.5194/acp-13-961-2013

Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach
journal, January 2014

  • Crippa, M.; Canonaco, F.; Lanz, V. A.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 12
  • DOI: 10.5194/acp-14-6159-2014

Receptor modelling of fine particles in southern England using CMB including comparison with AMS-PMF factors
journal, January 2015

  • Yin, J.; Cumberland, S. A.; Harrison, R. M.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 4
  • DOI: 10.5194/acp-15-2139-2015

Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity
journal, January 2015

  • Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 14
  • DOI: 10.5194/acp-15-8301-2015

Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002
journal, January 2005


Effects of NO x on the Volatility of Secondary Organic Aerosol from Isoprene Photooxidation
journal, February 2014

  • Xu, Lu; Kollman, Matthew S.; Song, Chen
  • Environmental Science & Technology, Vol. 48, Issue 4
  • DOI: 10.1021/es404842g

Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): an overview of the REPARTEE experiment and its conclusions
journal, January 2012

  • Harrison, R. M.; Dall&apos;Osto, M.; Beddows, D. C. S.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 6
  • DOI: 10.5194/acp-12-3065-2012

Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data
journal, January 2012

  • Mohr, C.; DeCarlo, P. F.; Heringa, M. F.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 4
  • DOI: 10.5194/acp-12-1649-2012

Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction
journal, January 2010

  • Morgan, W. T.; Allan, J. D.; Bower, K. N.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 8
  • DOI: 10.5194/acp-10-4065-2010

Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications
journal, January 2015

  • Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-253-2015

Chemically-Resolved Volatility Measurements of Organic Aerosol from Different Sources
journal, July 2009

  • Huffman, J. A.; Docherty, K. S.; Mohr, C.
  • Environmental Science & Technology, Vol. 43, Issue 14
  • DOI: 10.1021/es803539d

A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe
journal, May 2004


Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review
journal, October 2011

  • Zhang, Qi; Jimenez, Jose L.; Canagaratna, Manjula R.
  • Analytical and Bioanalytical Chemistry, Vol. 401, Issue 10
  • DOI: 10.1007/s00216-011-5355-y

Development and Characterization of a Fast-Stepping/Scanning Thermodenuder for Chemically-Resolved Aerosol Volatility Measurements
journal, March 2008

  • Huffman, J. Alex; Ziemann, Paul J.; Jayne, John T.
  • Aerosol Science and Technology, Vol. 42, Issue 5
  • DOI: 10.1080/02786820802104981

Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: analysis of aerosol mass spectrometer data
journal, January 2009

  • Grieshop, A. P.; Donahue, N. M.; Robinson, A. L.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 6
  • DOI: 10.5194/acp-9-2227-2009

On transport phenomena and equilibration time scales in thermodenuders
journal, January 2011

  • Saleh, R.; Shihadeh, A.; Khlystov, A.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 3
  • DOI: 10.5194/amt-4-571-2011

Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution
journal, January 2009

  • Grieshop, A. P.; Logue, J. M.; Donahue, N. M.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 4
  • DOI: 10.5194/acp-9-1263-2009

Influence of aerosol chemical composition on N 2 O 5 uptake: airborne regional measurements in northwestern Europe
journal, January 2015

  • Morgan, W. T.; Ouyang, B.; Allan, J. D.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 2
  • DOI: 10.5194/acp-15-973-2015

Emissions and photochemistry of oxygenated VOCs in urban plumes in the Northeastern United States
journal, January 2011

  • Sommariva, R.; de Gouw, J. A.; Trainer, M.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 14
  • DOI: 10.5194/acp-11-7081-2011

Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition
journal, February 2012