skip to main content


Title: Surface Structure Dependence of SO 2 Interaction with Ceria Nanocrystals with Well-defined Surface Facets

The effects of the surface structure of ceria (CeO 2) on the nature, strength, and amount of species resulting from SO 2 adsorption were studied using in situ IR and Raman spectroscopies coupled with mass spectrometry, along with first-principles calculations based on density functional theory (DFT). CeO 2 nanocrystals with different morphologies, namely, rods (representing a defective structure), cubes (100 facet), and octahedra (111 facet), were used to represent different CeO 2 surface structures. IR and Raman spectroscopic studies showed that the structure and binding strength of adsorbed species from SO 2 depend on the shape of the CeO 2 nanocrystals. SO 2 adsorbs mainly as surface sulfites and sulfates at room temperature on CeO 2 rods, cubes, and octahedra that were either oxidatively or reductively pretreated. The formation of sulfites is more evident on CeO 2 octahedra, whereas surface sulfates are more prominent on CeO 2 rods and cubes. This is explained by the increasing reducibility of the surface oxygen in the order octahedra < cubes < rods. Bulk sulfites are also formed during SO 2 adsorption on reduced CeO 2 rods. The formation of surface sulfites and sulfates on CeO 2 cubes is in good agreement with ourmore » DFT results of SO 2 interactions with the CeO 2(100) surface. CeO 2 rods desorb SO2 at higher temperatures than cubes and octahedra nanocrystals, but bulk sulfates are formed on CeO 2 rods and cubes after high-temperature desorption whereas only some surface sulfates/sulfites are left on octahedra. This difference is rationalized by the fact that CeO 2 rods have the highest surface basicity and largest amount of defects among the three nanocrystals, so they bind and react with SO 2 strongly and are the most degraded after SO 2 adsorption cycles. The fundamental understanding obtained in this work on the effects of the surface structure and defects on the interaction of SO 2 with CeO 2 provides insights for the design of more sulfur-resistant CeO 2-based catalysts.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 119; Journal Issue: 52; Journal ID: ISSN 1932-7447
American Chemical Society
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
OSTI Identifier: