DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

Abstract

Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO)more » emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [3]; ORCiD logo [4];  [3];  [3];  [5]
  1. Yale Univ., New Haven, CT (United States). Dept. of Geology and Geophysics
  2. Yale Univ., New Haven, CT (United States). Dept. of Geology and Geophysics and School of Forestry and Environmental Studies
  3. National Center for Atmospheric Research, Boulder, CO (United States). Atmospheric Chemistry Observations and Modeling Lab
  4. National Center for Atmospheric Research, Boulder, CO (United States). Atmospheric Chemistry Observations and Modeling Lab.; Ludwig Maximilian Univ., Munich (Germany). Meteorology Inst.
  5. Univ. of Colorado, Boulder, CO (United States). Dept. of Atmospheric and Oceanic Sciences and Lab. for Atmospheric and Space Physics; National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.
Publication Date:
Research Org.:
Yale Univ., New Haven, CT (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Center for Atmospheric Research, Boulder, CO (United States); National Science Foundation (NSF)
OSTI Identifier:
1228450
Alternate Identifier(s):
OSTI ID: 1457229
Grant/Contract Number:  
SC0006711
Resource Type:
Published Article
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online) Journal Volume: 15 Journal Issue: 23; Journal ID: ISSN 1680-7324
Publisher:
Copernicus Publications, EGU
Country of Publication:
Germany
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Zheng, Y., Unger, N., Hodzic, A., Emmons, L., Knote, C., Tilmes, S., Lamarque, J. -F., and Yu, P. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation. Germany: N. p., 2015. Web. doi:10.5194/acp-15-13487-2015.
Zheng, Y., Unger, N., Hodzic, A., Emmons, L., Knote, C., Tilmes, S., Lamarque, J. -F., & Yu, P. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation. Germany. https://doi.org/10.5194/acp-15-13487-2015
Zheng, Y., Unger, N., Hodzic, A., Emmons, L., Knote, C., Tilmes, S., Lamarque, J. -F., and Yu, P. Tue . "Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation". Germany. https://doi.org/10.5194/acp-15-13487-2015.
@article{osti_1228450,
title = {Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation},
author = {Zheng, Y. and Unger, N. and Hodzic, A. and Emmons, L. and Knote, C. and Tilmes, S. and Lamarque, J. -F. and Yu, P.},
abstractNote = {Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.},
doi = {10.5194/acp-15-13487-2015},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 23,
volume = 15,
place = {Germany},
year = {Tue Dec 08 00:00:00 EST 2015},
month = {Tue Dec 08 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/acp-15-13487-2015

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2)
journal, January 2015

  • Tilmes, S.; Lamarque, J. -F.; Emmons, L. K.
  • Geoscientific Model Development, Vol. 8, Issue 5
  • DOI: 10.5194/gmd-8-1395-2015

Modeling the meteorological and chemical effects of secondary organic aerosols during an EUCAARI campaign
journal, January 2013

  • Athanasopoulou, E.; Vogel, H.; Vogel, B.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 2
  • DOI: 10.5194/acp-13-625-2013

Evidence for NOx Control over Nighttime SOA Formation
journal, September 2012


Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging
journal, March 2007


Kinetics, products, and mechanisms of secondary organic aerosol formation
journal, January 2012

  • Ziemann, Paul J.; Atkinson, Roger
  • Chemical Society Reviews, Vol. 41, Issue 19
  • DOI: 10.1039/c2cs35122f

Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area
journal, January 2010

  • Tsimpidi, A. P.; Karydis, V. A.; Zavala, M.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 2
  • DOI: 10.5194/acp-10-525-2010

An Asian emission inventory of anthropogenic emission sources for the period 1980–2020
journal, January 2007

  • Ohara, T.; Akimoto, H.; Kurokawa, J.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 16
  • DOI: 10.5194/acp-7-4419-2007

Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra
journal, January 2007

  • Lanz, V. A.; Alfarra, M. R.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 6
  • DOI: 10.5194/acp-7-1503-2007

Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons
journal, September 1999

  • Griffin, Robert J.; Cocker, David R.; Seinfeld, John H.
  • Geophysical Research Letters, Vol. 26, Issue 17
  • DOI: 10.1029/1999GL900476

A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006: A VOLATILITY BASIS SET MODEL FOR SOA
journal, March 2012

  • Ahmadov, R.; McKeen, S. A.; Robinson, A. L.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D6
  • DOI: 10.1029/2011JD016831

Volatile Organic Compounds in the Atmosphere: An Overview
book, June 2007


Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China
journal, January 2013


Effects of post-sampling conditions on ambient carbon aerosol filter measurements
journal, December 2009


Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations
journal, January 2008

  • Shrivastava, Manish K.; Lane, Timothy E.; Donahue, Neil M.
  • Journal of Geophysical Research, Vol. 113, Issue D18
  • DOI: 10.1029/2007JD009735

The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions
journal, January 2012

  • Guenther, A. B.; Jiang, X.; Heald, C. L.
  • Geoscientific Model Development, Vol. 5, Issue 6
  • DOI: 10.5194/gmd-5-1471-2012

Global modeling of organic aerosol: the importance of reactive nitrogen (NO x and NO 3 )
journal, January 2010

  • Pye, H. O. T.; Chan, A. W. H.; Barkley, M. P.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 22
  • DOI: 10.5194/acp-10-11261-2010

Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry
journal, January 2000

  • Barth, M. C.; Rasch, P. J.; Kiehl, J. T.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D1
  • DOI: 10.1029/1999JD900773

Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models
journal, January 2011


Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol
journal, April 2014

  • Zhang, X.; Cappa, C. D.; Jathar, S. H.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 16
  • DOI: 10.1073/pnas.1404727111

A review of natural aerosol interactions and feedbacks within the Earth system
journal, January 2010

  • Carslaw, K. S.; Boucher, O.; Spracklen, D. V.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 4
  • DOI: 10.5194/acp-10-1701-2010

Methods to Assess Carbonaceous Aerosol Sampling Artifacts for IMPROVE and Other Long-Term Networks
journal, August 2009

  • Watson, John G.; Chow, Judith C.; Chen, L. -W. Antony
  • Journal of the Air & Waste Management Association, Vol. 59, Issue 8
  • DOI: 10.3155/1047-3289.59.8.898

High secondary aerosol contribution to particulate pollution during haze events in China
journal, September 2014

  • Huang, Ru-Jin; Zhang, Yanlin; Bozzetti, Carlo
  • Nature, Vol. 514, Issue 7521
  • DOI: 10.1038/nature13774

Aerosol mass spectrometer constraint on the global secondary organic aerosol budget
journal, January 2011

  • Spracklen, D. V.; Jimenez, J. L.; Carslaw, K. S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12109-2011

O RGANIC A TMOSPHERIC P ARTICULATE M ATERIAL
journal, October 2003


A simplified description of the evolution of organic aerosol composition in the atmosphere: VAN KREVELEN DIAGRAM OF ORGANIC AEROSOL
journal, April 2010

  • Heald, C. L.; Kroll, J. H.; Jimenez, J. L.
  • Geophysical Research Letters, Vol. 37, Issue 8
  • DOI: 10.1029/2010GL042737

The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US
journal, January 2015

  • Knote, C.; Hodzic, A.; Jimenez, J. L.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-1-2015

Effects of changing power plant NO x emissions on ozone in the eastern United States: Proof of concept
journal, January 2006

  • Frost, G. J.; McKeen, S. A.; Trainer, M.
  • Journal of Geophysical Research, Vol. 111, Issue D12
  • DOI: 10.1029/2005JD006354

Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols
journal, January 2005

  • Zhang, Q.; Worsnop, D. R.; Canagaratna, M. R.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 12
  • DOI: 10.5194/acp-5-3289-2005

O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry
journal, June 2008

  • Aiken, Allison C.; DeCarlo, Peter F.; Kroll, Jesse H.
  • Environmental Science & Technology, Vol. 42, Issue 12
  • DOI: 10.1021/es703009q

CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model
journal, January 2012

  • Lamarque, J. -F.; Emmons, L. K.; Hess, P. G.
  • Geoscientific Model Development, Vol. 5, Issue 2
  • DOI: 10.5194/gmd-5-369-2012

Organic aerosol and global climate modelling: a review
journal, January 2005

  • Kanakidou, M.; Seinfeld, J. H.; Pandis, S. N.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 4
  • DOI: 10.5194/acp-5-1053-2005

Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties
journal, January 2013

  • Emanuelsson, E. U.; Hallquist, M.; Kristensen, K.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2837-2013

Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer
journal, January 2007

  • Canagaratna, M. R.; Jayne, J. T.; Jimenez, J. L.
  • Mass Spectrometry Reviews, Vol. 26, Issue 2
  • DOI: 10.1002/mas.20115

The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning
journal, January 2011

  • Wiedinmyer, C.; Akagi, S. K.; Yokelson, R. J.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-625-2011

On the nature and origins of visibility-reducing aerosols in the los angeles air basin
journal, January 1977


Secondary Organic Aerosol Formation from Isoprene Photooxidation
journal, March 2006

  • Kroll, Jesse H.; Ng, Nga L.; Murphy, Shane M.
  • Environmental Science & Technology, Vol. 40, Issue 6
  • DOI: 10.1021/es0524301

Secondary Organic Aerosol Production from Terpene Ozonolysis. 2. Effect of NO x Concentration
journal, September 2005

  • Presto, Albert A.; Huff Hartz, Kara E.; Donahue, Neil M.
  • Environmental Science & Technology, Vol. 39, Issue 18
  • DOI: 10.1021/es050400s

Particle-Phase Chemistry of Secondary Organic Material: Modeled Compared to Measured O:C and H:C Elemental Ratios Provide Constraints
journal, June 2011

  • Chen, Qi; Liu, Yingjun; Donahue, Neil M.
  • Environmental Science & Technology, Vol. 45, Issue 11
  • DOI: 10.1021/es104398s

Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected
journal, January 2006

  • Volkamer, Rainer; Jimenez, Jose L.; San Martini, Federico
  • Geophysical Research Letters, Vol. 33, Issue 17
  • DOI: 10.1029/2006GL026899

Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime
journal, January 2015

  • Hodzic, A.; Madronich, S.; Kasibhatla, P. S.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 16
  • DOI: 10.5194/acp-15-9253-2015

Satellite-observed U.S. power plant NO x emission reductions and their impact on air quality
journal, January 2006

  • Kim, S. -W.; Heckel, A.; McKeen, S. A.
  • Geophysical Research Letters, Vol. 33, Issue 22
  • DOI: 10.1029/2006GL027749

Atmospheric Aerosols: Biogeochemical Sources and Role in Atmospheric Chemistry
journal, May 1997


Investigating the influences of SO 2 and NH 3 levels on isoprene-derived secondary organic aerosol formation using conditional sampling approaches
journal, January 2013

  • Lin, Y. -H.; Knipping, E. M.; Edgerton, E. S.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 16
  • DOI: 10.5194/acp-13-8457-2013

Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change: FUTURE PREDICTED CHANGE IN GLOBAL SOA
journal, March 2008

  • Heald, C. L.; Henze, D. K.; Horowitz, L. W.
  • Journal of Geophysical Research: Atmospheres, Vol. 113, Issue D5
  • DOI: 10.1029/2007JD009092

Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model
journal, January 2011


The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air quality studies
journal, June 1993

  • Chow, Judith C.; Watson, John G.; Pritchett, Lyle C.
  • Atmospheric Environment. Part A. General Topics, Vol. 27, Issue 8
  • DOI: 10.1016/0960-1686(93)90245-T

Secondary organic aerosol formation from <i>m</i>-xylene, toluene, and benzene
journal, January 2007

  • Ng, N. L.; Kroll, J. H.; Chan, A. W. H.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 14
  • DOI: 10.5194/acp-7-3909-2007

A review of the anthropogenic influence on biogenic secondary organic aerosol
journal, January 2011

  • Hoyle, C. R.; Boy, M.; Donahue, N. M.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 1
  • DOI: 10.5194/acp-11-321-2011

Atmospheric Degradation of Volatile Organic Compounds
journal, December 2003

  • Atkinson, Roger; Arey, Janet
  • Chemical Reviews, Vol. 103, Issue 12
  • DOI: 10.1021/cr0206420

Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model
journal, October 2008


Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO 3 )
journal, January 2008

  • Ng, N. L.; Kwan, A. J.; Surratt, J. D.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 14
  • DOI: 10.5194/acp-8-4117-2008

Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere
journal, May 2008


Multiday production of condensing organic aerosol mass in urban and forest outflow
journal, January 2015

  • Lee-Taylor, J.; Hodzic, A.; Madronich, S.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 2
  • DOI: 10.5194/acp-15-595-2015

Interannual variability in global biomass burning emissions from 1997 to 2004
journal, January 2006

  • van der Werf, G. R.; Randerson, J. T.; Giglio, L.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 11
  • DOI: 10.5194/acp-6-3423-2006

To What Extent Can Biogenic SOA be Controlled?
journal, May 2010

  • Carlton, Annmarie G.; Pinder, Robert W.; Bhave, Prakash V.
  • Environmental Science & Technology, Vol. 44, Issue 9
  • DOI: 10.1021/es903506b

Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)
journal, January 2006

  • Guenther, A.; Karl, T.; Harley, P.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 11
  • DOI: 10.5194/acp-6-3181-2006

Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics
journal, April 2006

  • Donahue, N. M.; Robinson, A. L.; Stanier, C. O.
  • Environmental Science & Technology, Vol. 40, Issue 8
  • DOI: 10.1021/es052297c