DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measuring and modeling the lifetime of nitrous oxide including its variability: NITROUS OXIDE AND ITS CHANGING LIFETIME

Abstract

The lifetime of nitrous oxide, the third-most-important human-emitted greenhouse gas, is based to date primarily on model studies or scaling to other gases. This work calculates a semiempirical lifetime based on Microwave Limb Sounder satellite measurements of stratospheric profiles of nitrous oxide, ozone, and temperature; laboratory cross-section data for ozone and molecular oxygen plus kinetics for O(1D); the observed solar spectrum; and a simple radiative transfer model. The result is 116 ± 9 years. The observed monthly-to-biennial variations in lifetime and tropical abundance are well matched by four independent chemistry-transport models driven by reanalysis meteorological fields for the period of observation (2005–2010), but all these models overestimate the lifetime due to lower abundances in the critical loss region near 32 km in the tropics. These models plus a chemistry-climate model agree on the nitrous oxide feedback factor on its own lifetime of 0.94 ± 0.01, giving N2O perturbations an effective residence time of 109 years. Combining this new empirical lifetime with model estimates of residence time and preindustrial lifetime (123 years) adjusts our best estimates of the human-natural balance of emissions today and improves the accuracy of projected nitrous oxide increases over this century.

Authors:
 [1];  [1];  [1];  [2];  [2];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9]
  1. Earth System Science, University of California Irvine, Irvine California USA
  2. NASA Goddard Space Flight Center, Greenbelt Maryland USA
  3. NASA Goddard Space Flight Center, Greenbelt Maryland USA, Science Systems and Applications, Inc., Lanham Maryland USA
  4. Science Systems and Applications, Inc., Lanham Maryland USA
  5. NASA Goddard Space Flight Center, Greenbelt Maryland USA, Goddard Earth Sciences Technology and Research Center, Universities Space Research Association, Columbia Maryland USA
  6. Center for International Climate and Environmental Research-Oslo, Oslo Norway
  7. Department of Geosciences, University of Oslo, Oslo Norway
  8. Jet Propulsion Laboratory, Pasadena California USA
  9. Instituto de Astrofísica de Andalucía, CSIC, Granada Spain
Publication Date:
Research Org.:
Univ. of California, Irvine, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1225771
Alternate Identifier(s):
OSTI ID: 1454734
Grant/Contract Number:  
SC0007021; AYA2011-23552; 1005042; SC0012536
Resource Type:
Published Article
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Volume: 120; Journal Issue: 11; Journal ID: ISSN 2169-897X
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; nitrous oxide; atmospheric lifetime; perturbation lifetime; stratospheric photochemistry; models and measurements; anthropogenic emissions

Citation Formats

Prather, Michael J., Hsu, Juno, DeLuca, Nicole M., Jackman, Charles H., Oman, Luke D., Douglass, Anne R., Fleming, Eric L., Strahan, Susan E., Steenrod, Stephen D., Søvde, O. Amund, Isaksen, Ivar S. A., Froidevaux, Lucien, and Funke, Bernd. Measuring and modeling the lifetime of nitrous oxide including its variability: NITROUS OXIDE AND ITS CHANGING LIFETIME. United States: N. p., 2015. Web. doi:10.1002/2015JD023267.
Prather, Michael J., Hsu, Juno, DeLuca, Nicole M., Jackman, Charles H., Oman, Luke D., Douglass, Anne R., Fleming, Eric L., Strahan, Susan E., Steenrod, Stephen D., Søvde, O. Amund, Isaksen, Ivar S. A., Froidevaux, Lucien, & Funke, Bernd. Measuring and modeling the lifetime of nitrous oxide including its variability: NITROUS OXIDE AND ITS CHANGING LIFETIME. United States. https://doi.org/10.1002/2015JD023267
Prather, Michael J., Hsu, Juno, DeLuca, Nicole M., Jackman, Charles H., Oman, Luke D., Douglass, Anne R., Fleming, Eric L., Strahan, Susan E., Steenrod, Stephen D., Søvde, O. Amund, Isaksen, Ivar S. A., Froidevaux, Lucien, and Funke, Bernd. Fri . "Measuring and modeling the lifetime of nitrous oxide including its variability: NITROUS OXIDE AND ITS CHANGING LIFETIME". United States. https://doi.org/10.1002/2015JD023267.
@article{osti_1225771,
title = {Measuring and modeling the lifetime of nitrous oxide including its variability: NITROUS OXIDE AND ITS CHANGING LIFETIME},
author = {Prather, Michael J. and Hsu, Juno and DeLuca, Nicole M. and Jackman, Charles H. and Oman, Luke D. and Douglass, Anne R. and Fleming, Eric L. and Strahan, Susan E. and Steenrod, Stephen D. and Søvde, O. Amund and Isaksen, Ivar S. A. and Froidevaux, Lucien and Funke, Bernd},
abstractNote = {The lifetime of nitrous oxide, the third-most-important human-emitted greenhouse gas, is based to date primarily on model studies or scaling to other gases. This work calculates a semiempirical lifetime based on Microwave Limb Sounder satellite measurements of stratospheric profiles of nitrous oxide, ozone, and temperature; laboratory cross-section data for ozone and molecular oxygen plus kinetics for O(1D); the observed solar spectrum; and a simple radiative transfer model. The result is 116 ± 9 years. The observed monthly-to-biennial variations in lifetime and tropical abundance are well matched by four independent chemistry-transport models driven by reanalysis meteorological fields for the period of observation (2005–2010), but all these models overestimate the lifetime due to lower abundances in the critical loss region near 32 km in the tropics. These models plus a chemistry-climate model agree on the nitrous oxide feedback factor on its own lifetime of 0.94 ± 0.01, giving N2O perturbations an effective residence time of 109 years. Combining this new empirical lifetime with model estimates of residence time and preindustrial lifetime (123 years) adjusts our best estimates of the human-natural balance of emissions today and improves the accuracy of projected nitrous oxide increases over this century.},
doi = {10.1002/2015JD023267},
journal = {Journal of Geophysical Research: Atmospheres},
number = 11,
volume = 120,
place = {United States},
year = {Fri Jun 05 00:00:00 EDT 2015},
month = {Fri Jun 05 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/2015JD023267

Citation Metrics:
Cited by: 99 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Tracer-tracer correlations: Three-dimensional model simulations and comparisons to observations
journal, August 1997

  • Avallone, Linnea M.; Prather, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D15
  • DOI: 10.1029/97JD01123

Odin stratospheric proxy NO y measurements and climatology
journal, January 2008

  • Brohede, S.; McLinden, C. A.; Urban, J.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 19
  • DOI: 10.5194/acp-8-5731-2008

Multimodel estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future: Model Estimates of Atmospheric Lifetimes
journal, March 2014

  • Chipperfield, M. P.; Liang, Q.; Strahan, S. E.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 5
  • DOI: 10.1002/2013JD021097

The influence of nitrogen oxides on the atmospheric ozone content
journal, April 1970

  • Crutzen, P. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 96, Issue 408
  • DOI: 10.1002/qj.49709640815

Radicals and reservoirs in the GMI chemistry and transport model: Comparison to measurements
journal, January 2004


Understanding differences in chemistry climate model projections of stratospheric ozone: Explaining Differences in O3 Projections
journal, April 2014

  • Douglass, A. R.; Strahan, S. E.; Oman, L. D.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 8
  • DOI: 10.1002/2013JD021159

Consequences of human modification of the global nitrogen cycle
journal, July 2013

  • Erisman, Jan Willem; Galloway, James N.; Seitzinger, Sybil
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 368, Issue 1621
  • DOI: 10.1098/rstb.2013.0116

A model study of the impact of source gas changes on the stratosphere for 1850–2100
journal, January 2011

  • Fleming, E. L.; Jackman, C. H.; Stolarski, R. S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 16
  • DOI: 10.5194/acp-11-8515-2011

Validation of Aura Microwave Limb Sounder stratospheric ozone measurements
journal, January 2008

  • Froidevaux, L.; Jiang, Y. B.; Lambert, A.
  • Journal of Geophysical Research, Vol. 113, Issue D15
  • DOI: 10.1029/2007JD008771

Global OZone Chemistry And Related Datasets for the Stratosphere (GOZCARDS): methodology and sample results with a focus on HCl, H 2 O, and O 3
journal, January 2015

  • Froidevaux, L.; Anderson, J.; Wang, H. -J.
  • Atmospheric Chemistry and Physics Discussions, Vol. 15, Issue 5
  • DOI: 10.5194/acpd-15-5849-2015

Hemispheric distributions and interannual variability of NO y produced by energetic particle precipitation in 2002-2012
journal, December 2014

  • Funke, B.; López-Puertas, M.; Holt, L.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 23
  • DOI: 10.1002/2014JD022423

Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions
journal, May 2008


Middle atmospheric changes caused by the January and March 2012 solar proton events
journal, January 2014

  • Jackman, C. H.; Randall, C. E.; Harvey, V. L.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 2
  • DOI: 10.5194/acp-14-1025-2014

A global inventory of stratospheric NO y from ACE-FTS
journal, January 2011

  • Jones, A.; Qin, G.; Strong, K.
  • Journal of Geophysical Research, Vol. 116, Issue D17
  • DOI: 10.1029/2010JD015465

Use of satellite data to constrain the model-calculated atmospheric lifetime for N 2 O: Implications for other trace gases
journal, January 1991

  • Ko, Malcolm K. W.; Sze, Nien Dak; Weisenstein, Debra K.
  • Journal of Geophysical Research, Vol. 96, Issue D4
  • DOI: 10.1029/91JD00273

Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements
journal, January 2007

  • Lambert, A.; Read, W. G.; Livesey, N. J.
  • Journal of Geophysical Research, Vol. 112, Issue D24
  • DOI: 10.1029/2007JD008724

Observation-based assessment of stratospheric fractional release, lifetimes, and ozone depletion potentials of ten important source gases
journal, January 2013

  • Laube, J. C.; Keil, A.; Bönisch, H.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2779-2013

Seasonal variations of stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM): SEASONAL VARIATIONS OF AGE SPECTRA
journal, March 2012

  • Li, Feng; Waugh, Darryn W.; Douglass, Anne R.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D5
  • DOI: 10.1029/2011JD016877

The RCP greenhouse gas concentrations and their extensions from 1765 to 2300
journal, August 2011


Infrared radiative forcing and atmospheric lifetimes of trace species based on observations from UARS
journal, September 1998

  • Minschwaner, K.; Carver, R. W.; Briegleb, B. P.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D18
  • DOI: 10.1029/98JD02116

Stratospheric loss and atmospheric lifetimes of CFC-11 and CFC-12 derived from satellite observations
journal, January 2013

  • Minschwaner, K.; Hoffmann, L.; Brown, A.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 8
  • DOI: 10.5194/acp-13-4253-2013

An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposphere
journal, January 1994

  • Murphy, D. M.; Fahey, D. W.
  • Journal of Geophysical Research, Vol. 99, Issue D3
  • DOI: 10.1029/93JD03558

Stratospheric N 2 O-NO y system: Testing uncertainties in a three-dimensional framework
journal, November 2001

  • Olsen, S. C.; McLinden, C. A.; Prather, M. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D22
  • DOI: 10.1029/2001JD000559

Results from the Intergovernmental Panel on Climatic Change Photochemical Model Intercomparison (PhotoComp)
journal, March 1997

  • Olson, Jennifer; Prather, Michael; Berntsen, Terje
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D5
  • DOI: 10.1029/96JD03380

Improvements in total column ozone in GEOSCCM and comparisons with a new ozone-depleting substances scenario
journal, May 2014

  • Oman, Luke D.; Douglass, Anne R.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 9
  • DOI: 10.1002/2014JD021590

Predicting Solar Cycle 24 Using a Geomagnetic Precursor Pair
journal, January 2014


Time Scales in Atmospheric Chemistry: Coupled Perturbations to N2O, NOy, and O3
journal, February 1998


Lifetimes and time scales in atmospheric chemistry
journal, May 2007

  • Prather, Michael J.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 365, Issue 1856
  • DOI: 10.1098/rsta.2007.2040

A perspective on time: loss frequencies, time scales and lifetimes
journal, January 2013

  • Prather, Michael J.; Holmes, Christopher D.
  • Environmental Chemistry, Vol. 10, Issue 2
  • DOI: 10.1071/EN13017

Coupling of Nitrous Oxide and Methane by Global Atmospheric Chemistry
journal, November 2010


Tracking uncertainties in the causal chain from human activities to climate
journal, January 2009

  • Prather, Michael J.; Penner, Joyce E.; Fuglestvedt, Jan S.
  • Geophysical Research Letters, Vol. 36, Issue 5
  • DOI: 10.1029/2008GL036474

Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry: ATMOSPHERIC CHEMISTRY AND GREENHOUSE GASES
journal, May 2012

  • Prather, Michael J.; Holmes, Christopher D.; Hsu, Juno
  • Geophysical Research Letters, Vol. 39, Issue 9
  • DOI: 10.1029/2012GL051440

Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements
journal, January 2008

  • Schwartz, M. J.; Lambert, A.; Manney, G. L.
  • Journal of Geophysical Research, Vol. 113, Issue D15
  • DOI: 10.1029/2007JD008783

The chemical transport model Oslo CTM3
journal, January 2012

  • Søvde, O. A.; Prather, M. J.; Isaksen, I. S. A.
  • Geoscientific Model Development, Vol. 5, Issue 6
  • DOI: 10.5194/gmd-5-1441-2012

Using transport diagnostics to understand chemistry climate model ozone simulations
journal, January 2011

  • Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.
  • Journal of Geophysical Research, Vol. 116, Issue D17
  • DOI: 10.1029/2010JD015360

The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations: CHEMISTRY AND TRANSPORT OF LOW OZONE
journal, February 2013

  • Strahan, S. E.; Douglass, A. R.; Newman, P. A.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 3
  • DOI: 10.1002/jgrd.50181

TransCom N 2 O model inter-comparison – Part 1: Assessing the influence of transport and surface fluxes on tropospheric N 2 O variability
journal, January 2014

  • Thompson, R. L.; Patra, P. K.; Ishijima, K.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 8
  • DOI: 10.5194/acp-14-4349-2014

Evaluation of source gas lifetimes from stratospheric observations
journal, November 1997

  • Volk, C. M.; Elkins, J. W.; Fahey, D. W.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D21
  • DOI: 10.1029/97JD02215