DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Correlating highpower conversion efficiency of PTB7:PC71BM inverted organic solar cells with nanoscale structures [Unraveling the correlation between the structural aspects and power conversion efficiency in PTB7:PC71BM inverted organic solar cells]

Abstract

Advances in materials design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) to their conventional counterparts, in addition to the well-known better ambient stability. Despite the significant progress, however, it has so far been unclear how the morphologies of the photoactive layer and its interface with the cathode modifying layer impact device performance. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with the well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3 -(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. We have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using a variety of characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the smearing (diffusion) of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The PC71BM diffusion occurs after spin-casting the active layer onto the PFN layer, when residual solvent molecules act as a plasticizer. Furthermore, the DIO additive, with a higher boiling point than the host solvent, has a longer residence time in the spin-cast active layer, resulting inmore » more PC71BM smearing and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.« less

Authors:
 [1];  [2];  [1];  [2];  [1];  [3];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1222555
Alternate Identifier(s):
OSTI ID: 1352519
Grant/Contract Number:  
AC05-00OR22725; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nanoscale
Additional Journal Information:
Journal Volume: 7; Journal Issue: 38; Journal ID: ISSN 2040-3364
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; inverted solar cell; neutron reflectivity; SANS; 36 MATERIALS SCIENCE

Citation Formats

Das, Sanjib, Browning, Jim, Gu, Gong, Yang, Bin, Do, Changwoo, Chen, Wei, Chen, Jihua, Ivanov, Ilia N, Hong, Kunlun, Rondinone, Adam J., Joshi, Pooran C., Geohegan, David B., Xiao, Kai, and Keum, Jong K. Correlating highpower conversion efficiency of PTB7:PC71BM inverted organic solar cells with nanoscale structures [Unraveling the correlation between the structural aspects and power conversion efficiency in PTB7:PC71BM inverted organic solar cells]. United States: N. p., 2015. Web. doi:10.1039/c5nr03332b.
Das, Sanjib, Browning, Jim, Gu, Gong, Yang, Bin, Do, Changwoo, Chen, Wei, Chen, Jihua, Ivanov, Ilia N, Hong, Kunlun, Rondinone, Adam J., Joshi, Pooran C., Geohegan, David B., Xiao, Kai, & Keum, Jong K. Correlating highpower conversion efficiency of PTB7:PC71BM inverted organic solar cells with nanoscale structures [Unraveling the correlation between the structural aspects and power conversion efficiency in PTB7:PC71BM inverted organic solar cells]. United States. https://doi.org/10.1039/c5nr03332b
Das, Sanjib, Browning, Jim, Gu, Gong, Yang, Bin, Do, Changwoo, Chen, Wei, Chen, Jihua, Ivanov, Ilia N, Hong, Kunlun, Rondinone, Adam J., Joshi, Pooran C., Geohegan, David B., Xiao, Kai, and Keum, Jong K. Thu . "Correlating highpower conversion efficiency of PTB7:PC71BM inverted organic solar cells with nanoscale structures [Unraveling the correlation between the structural aspects and power conversion efficiency in PTB7:PC71BM inverted organic solar cells]". United States. https://doi.org/10.1039/c5nr03332b. https://www.osti.gov/servlets/purl/1222555.
@article{osti_1222555,
title = {Correlating highpower conversion efficiency of PTB7:PC71BM inverted organic solar cells with nanoscale structures [Unraveling the correlation between the structural aspects and power conversion efficiency in PTB7:PC71BM inverted organic solar cells]},
author = {Das, Sanjib and Browning, Jim and Gu, Gong and Yang, Bin and Do, Changwoo and Chen, Wei and Chen, Jihua and Ivanov, Ilia N and Hong, Kunlun and Rondinone, Adam J. and Joshi, Pooran C. and Geohegan, David B. and Xiao, Kai and Keum, Jong K.},
abstractNote = {Advances in materials design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) to their conventional counterparts, in addition to the well-known better ambient stability. Despite the significant progress, however, it has so far been unclear how the morphologies of the photoactive layer and its interface with the cathode modifying layer impact device performance. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with the well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3 -(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. We have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using a variety of characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the smearing (diffusion) of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The PC71BM diffusion occurs after spin-casting the active layer onto the PFN layer, when residual solvent molecules act as a plasticizer. Furthermore, the DIO additive, with a higher boiling point than the host solvent, has a longer residence time in the spin-cast active layer, resulting in more PC71BM smearing and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.},
doi = {10.1039/c5nr03332b},
journal = {Nanoscale},
number = 38,
volume = 7,
place = {United States},
year = {Thu Jul 16 00:00:00 EDT 2015},
month = {Thu Jul 16 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 49 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer
journal, June 2008

  • Hau, Steven K.; Yip, Hin-Lap; Baek, Nam Seob
  • Applied Physics Letters, Vol. 92, Issue 25, Article No. 253301
  • DOI: 10.1063/1.2945281

Understanding How Processing Additives Tune the Nanoscale Morphology of High Efficiency Organic Photovoltaic Blends: From Casting Solution to Spun-Cast Thin Film
journal, August 2014

  • Shao, Ming; Keum, Jong Kahk; Kumar, Rajeev
  • Advanced Functional Materials, Vol. 24, Issue 42
  • DOI: 10.1002/adfm.201401547

Effects of Additives on the Morphology of Solution Phase Aggregates Formed by Active Layer Components of High-Efficiency Organic Solar Cells
journal, December 2011

  • Lou, Sylvia J.; Szarko, Jodi M.; Xu, Tao
  • Journal of the American Chemical Society, Vol. 133, Issue 51
  • DOI: 10.1021/ja2085564

Single-junction polymer solar cells with high efficiency and photovoltage
journal, February 2015


Sub-ns triplet state formation by non-geminate recombination in PSBTBT:PC 70 BM and PCPDTBT:PC 60 BM organic solar cells
journal, January 2015

  • Etzold, Fabian; Howard, Ian A.; Forler, Nina
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C4EE03630A

Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology
journal, October 2005

  • Ma, W.; Yang, C.; Gong, X.
  • Advanced Functional Materials, Vol. 15, Issue 10, p. 1617-1622
  • DOI: 10.1002/adfm.200500211

Ultrathin and lightweight organic solar cells with high flexibility
journal, January 2012

  • Kaltenbrunner, Martin; White, Matthew S.; Głowacki, Eric D.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1772

Side-Chain Tunability of Furan-Containing Low-Band-Gap Polymers Provides Control of Structural Order in Efficient Solar Cells
journal, January 2012

  • Yiu, Alan T.; Beaujuge, Pierre M.; Lee, Olivia P.
  • Journal of the American Chemical Society, Vol. 134, Issue 4
  • DOI: 10.1021/ja2089662

Package-Free Flexible Organic Solar Cells with Graphene top Electrodes
journal, April 2013

  • Liu, Zhike; Li, Jinhua; Yan, Feng
  • Advanced Materials, Vol. 25, Issue 31, p. 4296-4301
  • DOI: 10.1002/adma.201205337

Independent Control of Bulk and Interfacial Morphologies of Small Molecular Weight Organic Heterojunction Solar Cells
journal, July 2012

  • Zimmerman, Jeramy D.; Xiao, Xin; Renshaw, Christopher Kyle
  • Nano Letters, Vol. 12, Issue 8, p. 4366-4371
  • DOI: 10.1021/nl302172w

Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell
journal, December 2011


Surface Studies of Solids by Total Reflection of X-Rays
journal, July 1954


Interfacial modification to improve inverted polymer solar cells
journal, January 2008

  • Hau, Steven K.; Yip, Hin-Lap; Acton, Orb
  • Journal of Materials Chemistry, Vol. 18, Issue 42
  • DOI: 10.1039/b808004f

Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells
journal, April 2009

  • Xu, Zheng; Chen, Li-Min; Yang, Guanwen
  • Advanced Functional Materials, Vol. 19, Issue 8
  • DOI: 10.1002/adfm.200801286

Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes
journal, November 2008


Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC 71 BM Solar Cells
journal, October 2012

  • Collins, Brian A.; Li, Zhe; Tumbleston, John R.
  • Advanced Energy Materials, Vol. 3, Issue 1
  • DOI: 10.1002/aenm.201200377

Polymer solar cells with enhanced open-circuit voltage and efficiency
journal, November 2009

  • Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing
  • Nature Photonics, Vol. 3, Issue 11, p. 649-653
  • DOI: 10.1038/nphoton.2009.192

Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer
journal, November 2008

  • Tao, Chen; Ruan, Shengping; Zhang, Xindong
  • Applied Physics Letters, Vol. 93, Issue 19
  • DOI: 10.1063/1.3026741

High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends
journal, October 2005

  • Li, Gang; Shrotriya, Vishal; Huang, Jinsong
  • Nature Materials, Vol. 4, Issue 11, p. 864-868
  • DOI: 10.1038/nmat1500

Highly Efficient and Stable Inverted Polymer Solar Cells Integrated with a Cross-Linked Fullerene Material as an Interlayer
journal, April 2010

  • Hsieh, Chao-Hsiang; Cheng, Yen-Ju; Li, Pei-Jung
  • Journal of the American Chemical Society, Vol. 132, Issue 13
  • DOI: 10.1021/ja100236b

Flexible polymer solar cells with power conversion efficiency of 8.7%
journal, January 2014

  • Zhao, Baofeng; He, Zhicai; Cheng, Xiaoping
  • J. Mater. Chem. C, Vol. 2, Issue 26
  • DOI: 10.1039/C3TC32520B

From Binary to Ternary Solvent: Morphology Fine-tuning of D/A Blends in PDPP3T-based Polymer Solar Cells
journal, September 2012


P3HT:PCBM, Best Seller in Polymer Photovoltaic Research
journal, July 2011

  • Dang, Minh Trung; Hirsch, Lionel; Wantz, Guillaume
  • Advanced Materials, Vol. 23, Issue 31
  • DOI: 10.1002/adma.201100792

For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%
journal, May 2010

  • Liang, Yongye; Xu, Zheng; Xia, Jiangbin
  • Advanced Materials, Vol. 22, Issue 20, p. E135-E138
  • DOI: 10.1002/adma.200903528

Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends
journal, March 2006

  • Zhang, F.; Jespersen, K. G.; Björström, C.
  • Advanced Functional Materials, Vol. 16, Issue 5
  • DOI: 10.1002/adfm.200500339

Domain Compositions and Fullerene Aggregation Govern Charge Photogeneration in Polymer/Fullerene Solar Cells
journal, March 2014

  • Kesava, Sameer Vajjala; Fei, Zhuping; Rimshaw, Adam D.
  • Advanced Energy Materials, Vol. 4, Issue 11
  • DOI: 10.1002/aenm.201400116

Solar cell efficiency tables (Version 45): Solar cell efficiency tables
journal, December 2014

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 23, Issue 1
  • DOI: 10.1002/pip.2573

Molecular Order in High-Efficiency Polymer/Fullerene Bulk Heterojunction Solar Cells
journal, September 2011

  • Hammond, Matthew R.; Kline, R. Joseph; Herzing, Andrew A.
  • ACS Nano, Vol. 5, Issue 10
  • DOI: 10.1021/nn202951e

Morphological Characterization of a Low-Bandgap Crystalline Polymer:PCBM Bulk Heterojunction Solar Cells
journal, July 2011

  • Lu, Haiyun; Akgun, Bulent; Russell, Thomas P.
  • Advanced Energy Materials, Vol. 1, Issue 5
  • DOI: 10.1002/aenm.201100128

Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact
journal, December 2006

  • Waldauf, C.; Morana, M.; Denk, P.
  • Applied Physics Letters, Vol. 89, Issue 23
  • DOI: 10.1063/1.2402890

The Role of Mesoscopic PCBM Crystallites in Solvent Vapor Annealed Copolymer Solar Cells
journal, February 2009

  • Bull, Tricia A.; Pingree, Liam S. C.; Jenekhe, Samson A.
  • ACS Nano, Vol. 3, Issue 3, p. 627-636
  • DOI: 10.1021/nn800878c

Solution processable nanocarbon platform for polymer solar cells
journal, January 2011

  • Tu, Kun-Hua; Li, Shao-Sian; Li, Wei-Chih
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01333e

Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure
journal, August 2012


Works referencing / citing this record:

Perylene Diimide Trimers Based Bulk Heterojunction Organic Solar Cells with Efficiency over 7%
journal, March 2016

  • Liang, Ningning; Sun, Kai; Zheng, Zhong
  • Advanced Energy Materials, Vol. 6, Issue 11
  • DOI: 10.1002/aenm.201600060

Electron‐Beam‐Related Studies of Halide Perovskites: Challenges and Opportunities
journal, February 2020

  • Ran, Junhui; Dyck, Ondrej; Wang, Xiaozheng
  • Advanced Energy Materials, Vol. 10, Issue 26
  • DOI: 10.1002/aenm.201903191

Binary Solvent Additives Treatment Boosts the Efficiency of PTB7:PCBM Polymer Solar Cells to Over 9.5%
journal, February 2018


Stepwise heating in Stille polycondensation toward no batch-to-batch variations in polymer solar cell performance
journal, May 2018


Solution-processed, inverted organic solar cells with bilayered inorganic/organic electron extraction layers
journal, January 2016

  • Lee, Jung Suk; Cha, Myoung Joo; Park, Yu Jung
  • RSC Advances, Vol. 6, Issue 43
  • DOI: 10.1039/c5ra27077d

Colorful semitransparent polymer solar cells employing a bottom periodic one-dimensional photonic crystal and a top conductive PEDOT:PSS layer
journal, January 2016

  • Zhang, Yangdong; Peng, Zuosheng; Cai, Chaosheng
  • Journal of Materials Chemistry A, Vol. 4, Issue 30
  • DOI: 10.1039/c6ta05249e

High performance non-fullerene polymer solar cells based on PTB7-Th as the electron donor with 10.42% efficiency
journal, January 2018

  • Sun, Jia; Zhang, Zhuohan; Yin, Xinxing
  • Journal of Materials Chemistry A, Vol. 6, Issue 6
  • DOI: 10.1039/c7ta10391c

High-efficiency polymer solar cells with low temperature solution-processed SnO 2 /PFN as a dual-function electron transporting layer
journal, January 2018

  • Shen, Ping; Yao, Mengnan; Wang, Guoxin
  • Journal of Materials Chemistry A, Vol. 6, Issue 36
  • DOI: 10.1039/c8ta06378h

Deconstructing the behavior of donor–acceptor copolymers in solution & the melt: the case of PTB7
journal, January 2019

  • Ryno, Sean M.; Risko, Chad
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 15
  • DOI: 10.1039/c9cp00777f

Different agglomeration properties of PC 61 BM and PC 71 BM in photovoltaic inks – a spin-echo SANS study
journal, January 2020

  • Bernardo, Gabriel; Melle-Franco, Manuel; Washington, Adam L.
  • RSC Advances, Vol. 10, Issue 8
  • DOI: 10.1039/c9ra08019h

Organic bulk-heterojunction injected perovskite films for highly efficient solar cells
journal, January 2019

  • Hu, Ke-Hao; Wang, Zhao-Kui; Meng, Li
  • Journal of Materials Chemistry C, Vol. 7, Issue 21
  • DOI: 10.1039/c9tc01058k

Hole transport layer influencing the charge carrier dynamics during the degradation of organic solar cells
journal, February 2019

  • Rana, Aniket; Kumar, Amit; Chand, Suresh
  • Journal of Applied Physics, Vol. 125, Issue 5
  • DOI: 10.1063/1.5059555

Does 1,8-diiodooctane affect the aggregation state of PC 71 BM in solution?
journal, September 2018

  • Bernardo, Gabriel; Washington, Adam. L.; Zhang, Yiwei
  • Royal Society Open Science, Vol. 5, Issue 9
  • DOI: 10.1098/rsos.180937

Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells
journal, February 2018

  • Díez-Pascual, Ana; Luceño Sánchez, José; Peña Capilla, Rafael
  • Polymers, Vol. 10, Issue 2
  • DOI: 10.3390/polym10020217

Stepwise heating in Stille polycondensation toward no batch-to-batch variations in polymer solar cell performance
journal, May 2018


Does 1,8-diiodooctane affect the aggregation state of PC 71 BM in solution?
journal, September 2018

  • Bernardo, Gabriel; Washington, Adam. L.; Zhang, Yiwei
  • Royal Society Open Science, Vol. 5, Issue 9
  • DOI: 10.1098/rsos.180937

Recent Development in ITO-free Flexible Polymer Solar Cells
journal, December 2017


Long Lived Photoexcitation Dynamics in π-Conjugated Polymer/PbS Quantum Dot Blended Films for Photovoltaic Application
journal, August 2017