DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt

Abstract

The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.

Authors:
 [1];  [1];  [1];  [2];  [3];  [4];  [5];  [2];  [1];  [2];  [6];  [7];  [3];  [1]
  1. University of Strathclyde, Glasgow (United Kingdom)
  2. STFC Rutherford Appleton Lab., Oxfordshire (United Kingdom)
  3. Lund University, Lund (Sweden)
  4. Sandia National Labs., Albuquerque, NM (United States)
  5. Chinese Academy of Sciences, Beijing (China)
  6. University of Strathclyde, Glasgow (United Kingdom); STFC Rutherford Appleton Lab., Oxfordshire (United Kingdom)
  7. Shanghai Jiao Tong University, Shanghai (China)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1214815
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 113; Journal Issue: 18; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 36 MATERIALS SCIENCE

Citation Formats

MacLellan, D.  A., Carroll, D.  C., Gray, R.  J., Booth, N., Burza, M., Desjarlais, M.  P., Du, F., Neely, D., Powell, H.  W., Robinson, A.  P. L., Scott, G.  G., Yuan, X.  H., Wahlström, C. -G., and McKenna, P. Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt. United States: N. p., 2014. Web. doi:10.1103/PhysRevLett.113.185001.
MacLellan, D.  A., Carroll, D.  C., Gray, R.  J., Booth, N., Burza, M., Desjarlais, M.  P., Du, F., Neely, D., Powell, H.  W., Robinson, A.  P. L., Scott, G.  G., Yuan, X.  H., Wahlström, C. -G., & McKenna, P. Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt. United States. https://doi.org/10.1103/PhysRevLett.113.185001
MacLellan, D.  A., Carroll, D.  C., Gray, R.  J., Booth, N., Burza, M., Desjarlais, M.  P., Du, F., Neely, D., Powell, H.  W., Robinson, A.  P. L., Scott, G.  G., Yuan, X.  H., Wahlström, C. -G., and McKenna, P. Fri . "Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt". United States. https://doi.org/10.1103/PhysRevLett.113.185001. https://www.osti.gov/servlets/purl/1214815.
@article{osti_1214815,
title = {Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt},
author = {MacLellan, D.  A. and Carroll, D.  C. and Gray, R.  J. and Booth, N. and Burza, M. and Desjarlais, M.  P. and Du, F. and Neely, D. and Powell, H.  W. and Robinson, A.  P. L. and Scott, G.  G. and Yuan, X.  H. and Wahlström, C. -G. and McKenna, P.},
abstractNote = {The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.},
doi = {10.1103/PhysRevLett.113.185001},
journal = {Physical Review Letters},
number = 18,
volume = 113,
place = {United States},
year = {Fri Oct 31 00:00:00 EDT 2014},
month = {Fri Oct 31 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Schematic illustrating the experiment arrangement. Sheath-accelerated protons produced by the interaction of a pulse (200 J, 10 ps) from beam 1 with a 20 μm-thick Au foil are used to preheat and induce lattice melt in a 200 μm-thick Si target. Pulses (60 J, 1 ps) frommore » beam 2 are used to drive fast electron generation and transport within the Si sample. (b) Experimentally measured proton spectrum produced by beam 1. The inset shows the proton beam divergence half-angle (Θ1/2) as a function of energy.« less

Save / Share:

Works referenced in this record:

Ignition and high gain with ultrapowerful lasers
journal, May 1994

  • Tabak, Max; Hammer, James; Glinsky, Michael E.
  • Physics of Plasmas, Vol. 1, Issue 5, p. 1626-1634
  • DOI: 10.1063/1.870664

Hard x-ray production from high intensity laser solid interactions (invited)
journal, January 1999

  • Perry, M. D.; Sefcik, J. A.; Cowan, T.
  • Review of Scientific Instruments, Vol. 70, Issue 1
  • DOI: 10.1063/1.1149442

Effect of self-generated magnetic fields on fast-electron beam divergence in solid targets
journal, June 2010


Relativistic Quasimonoenergetic Positron Jets from Intense Laser-Solid Interactions
journal, July 2010


Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov–Fokker–Planck equation
journal, February 2006

  • Bell, A. R.; Robinson, A. P. L.; Sherlock, M.
  • Plasma Physics and Controlled Fusion, Vol. 48, Issue 3
  • DOI: 10.1088/0741-3335/48/3/R01

Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition
journal, August 2007

  • Robinson, A. P. L.; Sherlock, M.
  • Physics of Plasmas, Vol. 14, Issue 8
  • DOI: 10.1063/1.2768317

Guiding of Relativistic Electron Beams in Solid Targets by Resistively Controlled Magnetic Fields
journal, February 2009


Laser-Driven Fast Electron Collimation in Targets with Resistivity Boundary
journal, September 2010


Focusing of Relativistic Electrons in Dense Plasma Using a Resistivity-Gradient-Generated Magnetic Switchyard
journal, March 2012


Collisional particle-in-cell modelling of the generation and control of relativistic electron beams produced by ultra-intense laser pulses
journal, July 2012


Reduction of the fast electron angular dispersion by means of varying-resistivity structured targets
journal, January 2013

  • Debayle, A.; Gremillet, L.; Honrubia, J. J.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4789451

Dynamic Control over Mega-Ampere Electron Currents in Metals Using Ionization-Driven Resistive Magnetic Fields
journal, September 2011


Effect of Lattice Structure on Energetic Electron Transport in Solids Irradiated by Ultraintense Laser Pulses
journal, May 2011


Annular Fast Electron Transport in Silicon Arising from Low-Temperature Resistivity
journal, August 2013


Influence of laser-drive parameters on annular fast electron transport in silicon
journal, July 2014


Spatial Uniformity of Laser-Accelerated Ultrahigh-Current MeV Electron Propagation in Metals and Insulators
journal, December 2003


Fast electron transport patterns in intense laser-irradiated solids diagnosed by modeling measured multi-MeV proton beams
journal, July 2013

  • MacLellan, David A.; Carroll, David C.; Gray, Ross J.
  • Laser and Particle Beams, Vol. 31, Issue 3
  • DOI: 10.1017/S0263034613000529

HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
journal, May 2006

  • MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.031

Picosecond Short-Range Disordering in Isochorically Heated Aluminum at Solid Density
journal, January 2010


Ultrafast Melting of Carbon Induced by Intense Proton Beams
journal, December 2010


Pulsed laser melting of silicon: A molecular dynamics study
journal, August 1987

  • Kluge, Mark D.; Ray, John R.; Rahman, Aneesur
  • The Journal of Chemical Physics, Vol. 87, Issue 4
  • DOI: 10.1063/1.453703

Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon
journal, February 1983


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Electrical conductivity for warm, dense aluminum plasmas and liquids
journal, August 2002


Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas
journal, January 1997

  • Wilks, S. C.; Kruer, W. L.
  • IEEE Journal of Quantum Electronics, Vol. 33, Issue 11
  • DOI: 10.1109/3.641310

Injection and transport properties of fast electrons in ultraintense laser-solid interactions
journal, April 2013

  • Coury, M.; Carroll, D. C.; Robinson, A. P. L.
  • Physics of Plasmas, Vol. 20, Issue 4
  • DOI: 10.1063/1.4799726

Elliptical magnetic mirror generated via resistivity gradients for fast ignition inertial confinement fusion
journal, June 2013

  • Robinson, A. P. L.; Schmitz, H.
  • Physics of Plasmas, Vol. 20, Issue 6
  • DOI: 10.1063/1.4812193

Works referencing / citing this record:

Influence of low-temperature resistivity on fast electron transport in solids: scaling to fast ignition electron beam parameters
journal, April 2015


Role of lattice structure and low temperature resistivity in fast-electron-beam filamentation in carbon
journal, November 2015


Energy absorption and coupling to electrons in the transition from surface- to volume-dominant intense laser–plasma interaction regimes
journal, May 2020


Energy absorption and coupling to electrons in the transition from surface- to volume-dominant intense laser–plasma interaction regimes
text, January 2020

  • Williamson, S. D. R.; Gray, R. J.; King, M.
  • GSI Helmholtzzentrum fuer Schwerionenforschung, GSI, Darmstadt
  • DOI: 10.15120/gsi-2020-00920

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.