DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

Abstract

Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueous electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.

Authors:
 [1];  [2];  [3];  [2];  [4]
  1. Joint Center for Energy Storage Research (United States); United Technologies Research Center, East Hartford, CT (United States)
  2. Joint Center for Energy Storage Research (United States); Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Div.
  3. Joint Center for Energy Storage Research (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Chemical Engineering
  4. Joint Center for Energy Storage Research (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) (United States). Dept. of Chemical Engineering
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1214394
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 7; Journal Issue: 11; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Darling, Robert M., Gallagher, Kevin G., Kowalski, Jeffrey A., Ha, Seungbum, and Brushett, Fikile R. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. United States: N. p., 2014. Web. doi:10.1039/C4EE02158D.
Darling, Robert M., Gallagher, Kevin G., Kowalski, Jeffrey A., Ha, Seungbum, & Brushett, Fikile R. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. United States. https://doi.org/10.1039/C4EE02158D
Darling, Robert M., Gallagher, Kevin G., Kowalski, Jeffrey A., Ha, Seungbum, and Brushett, Fikile R. Sat . "Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries". United States. https://doi.org/10.1039/C4EE02158D. https://www.osti.gov/servlets/purl/1214394.
@article{osti_1214394,
title = {Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries},
author = {Darling, Robert M. and Gallagher, Kevin G. and Kowalski, Jeffrey A. and Ha, Seungbum and Brushett, Fikile R.},
abstractNote = {Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueous electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.},
doi = {10.1039/C4EE02158D},
journal = {Energy & Environmental Science},
number = 11,
volume = 7,
place = {United States},
year = {Sat Nov 01 00:00:00 EDT 2014},
month = {Sat Nov 01 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 453 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage
journal, January 2014

  • Carbajales-Dale, Michael; Barnhart, Charles J.; Benson, Sally M.
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c3ee42125b

Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Fuel cell electric vehicles and hydrogen infrastructure: status 2012
journal, January 2012

  • Eberle, Ulrich; Müller, Bernd; von Helmolt, Rittmar
  • Energy & Environmental Science, Vol. 5, Issue 10
  • DOI: 10.1039/c2ee22596d

Sustainable transportation based on electric vehicle concepts: a brief overview
journal, January 2010

  • Eberle, Dr Ulrich; von Helmolt, Dr Rittmar
  • Energy & Environmental Science, Vol. 3, Issue 6
  • DOI: 10.1039/c001674h

Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy
journal, June 2005


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

Redox flow cells for energy conversion
journal, September 2006

  • Ponce de Leon, C.; Frias-Ferrer, A.; Gonzalez-Garcia, J.
  • Journal of Power Sources, Vol. 160, Issue 1, p. 716-732
  • DOI: 10.1016/j.jpowsour.2006.02.095

Progress in Flow Battery Research and Development
journal, June 2011

  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage
journal, October 2013

  • Cho, Kyu Taek; Albertus, Paul; Battaglia, Vincent
  • Energy Technology, Vol. 1, Issue 10
  • DOI: 10.1002/ente.201300108

Recent Progress in Redox Flow Battery Research and Development
journal, September 2012

  • Wang, Wei; Luo, Qingtao; Li, Bin
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 970-986
  • DOI: 10.1002/adfm.201200694

The Influence of Electrode and Channel Configurations on Flow Battery Performance
journal, January 2014

  • Darling, Robert M.; Perry, Mike L.
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.0941409jes

Dramatic performance gains in vanadium redox flow batteries through modified cell architecture
journal, May 2012


High Performance Vanadium Redox Flow Batteries with Optimized Electrode Configuration and Membrane Selection
journal, January 2012

  • Liu, Q. H.; Grim, G. M.; Papandrew, A. B.
  • Journal of The Electrochemical Society, Vol. 159, Issue 8
  • DOI: 10.1149/2.051208jes

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
journal, March 2011

  • Li, Liyu; Kim, Soowhan; Wang, Wei
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
  • DOI: 10.1002/aenm.201100008

A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909

An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples
journal, January 2014

  • Yang, Bo; Hoober-Burkhardt, Lena; Wang, Fang
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.1001409jes

An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery
journal, June 2012

  • Brushett, Fikile R.; Vaughey, John T.; Jansen, Andrew N.
  • Advanced Energy Materials, Vol. 2, Issue 11, p. 1390-1396
  • DOI: 10.1002/aenm.201200322

Application of Redox Non-Innocent Ligands to Non-Aqueous Flow Battery Electrolytes
journal, September 2013

  • Cappillino, Patrick J.; Pratt, Harry D.; Hudak, Nicholas S.
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300566

Evaluation of electrolytes for redox flow battery applications
journal, January 2007


Non-Aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2ʹ-bipyridine) Complex Electrolyte
journal, January 2012

  • Mun, Junyoung; Lee, Myung-Jin; Park, Joung-Won
  • Electrochemical and Solid-State Letters, Vol. 15, Issue 6
  • DOI: 10.1149/2.033206esl

Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery
journal, January 2012

  • Wang, Wei; Xu, Wu; Cosimbescu, Lelia
  • Chemical Communications, Vol. 48, Issue 53, p. 6669-6671
  • DOI: 10.1039/c2cc32466k

A study of tiron in aqueous solutions for redox flow battery application
journal, January 2010


Electrochemical investigation of uranium β-diketonates for all-uranium redox flow battery
journal, November 2002


Electrochemical Properties of an All-Organic Redox Flow Battery Using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthalimide
journal, January 2011

  • Li, Zhen; Li, Sha; Liu, Suqin
  • Electrochemical and Solid-State Letters, Vol. 14, Issue 12, p. A171-A173
  • DOI: 10.1149/2.012112esl

A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective
journal, January 2013

  • Shin, Sung-Hee; Yun, Sung-Hyun; Moon, Seung-Hyeon
  • RSC Advances, Vol. 3, Issue 24, p. 9095-9116
  • DOI: 10.1039/c3ra00115f

Towards sustainable and versatile energy storage devices: an overview of organic electrode materials
journal, January 2013

  • Song, Zhiping; Zhou, Haoshen
  • Energy & Environmental Science, Vol. 6, Issue 8, p. 2280-2301
  • DOI: 10.1039/c3ee40709h

Characterisation and application of the Fe(II)/Fe(III) redox reaction in an ionic liquid analogue
journal, October 2013


Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries
journal, November 2010

  • Liu, Qinghua; Shinkle, Aaron A.; Li, Yongdan
  • Electrochemistry Communications, Vol. 12, Issue 11, p. 1634-1637
  • DOI: 10.1016/j.elecom.2010.09.013

A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte
journal, November 1988

  • Matsuda, Y.; Tanaka, K.; Okada, M.
  • Journal of Applied Electrochemistry, Vol. 18, Issue 6, p. 909-914
  • DOI: 10.1007/BF01016050

Ruthenium based redox flow battery for solar energy storage
journal, July 2011

  • Chakrabarti, Mohammed Harun; Roberts, Edward Pelham Lindfield; Bae, Chulheung
  • Energy Conversion and Management, Vol. 52, Issue 7
  • DOI: 10.1016/j.enconman.2011.01.012

Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries
journal, December 2009

  • Liu, Qinghua; Sleightholme, Alice E. S.; Shinkle, Aaron A.
  • Electrochemistry Communications, Vol. 11, Issue 12, p. 2312-2315
  • DOI: 10.1016/j.elecom.2009.10.006

Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries
journal, July 2011

  • Sleightholme, Alice E. S.; Shinkle, Aaron A.; Liu, Qinghua
  • Journal of Power Sources, Vol. 196, Issue 13, p. 5742-5745
  • DOI: 10.1016/j.jpowsour.2011.02.020

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee00072a

Polysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networks
journal, March 2014

  • Fan, Frank Y.; Woodford, William H.; Li, Zheng
  • Nano Letters, Vol. 14, Issue 4, p. 2210-2218
  • DOI: 10.1021/nl500740t

Semi-Solid Lithium Rechargeable Flow Battery
journal, May 2011

  • Duduta, Mihai; Ho, Bryan; Wood, Vanessa C.
  • Advanced Energy Materials, Vol. 1, Issue 4, p. 511-516
  • DOI: 10.1002/aenm.201100152

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Capital Cost Sensitivity Analysis of an All-Vanadium Redox-Flow Battery
journal, January 2012

  • Zhang, Mengqi; Moore, Mark; Watson, J. S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 8
  • DOI: 10.1149/2.041208jes

Cost and performance model for redox flow batteries
journal, February 2014


Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems
journal, March 2004


Review: An Economic Perspective on Liquid Solar Fuels
journal, January 2012

  • Newman, John; Hoertz, Paul G.; Bonino, Christopher A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 10
  • DOI: 10.1149/2.046210jes

The Effect of Electrolyte Flow on the Morphology of Zinc Electrodeposited from Aqueous Alkaline Solution Containing Zincate Ions
journal, January 1969

  • Naybour, R. D.
  • Journal of The Electrochemical Society, Vol. 116, Issue 4
  • DOI: 10.1149/1.2411939

Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries
journal, January 2000

  • Aurbach, D.; Zinigrad, E.; Teller, H.
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393349

Effect of Electrolyte Composition on Lithium Dendrite Growth
journal, January 2008

  • Crowther, Owen; West, Alan C.
  • Journal of The Electrochemical Society, Vol. 155, Issue 11
  • DOI: 10.1149/1.2969424

Quantifying the promise of lithium–air batteries for electric vehicles
journal, January 2014

  • Gallagher, Kevin G.; Goebel, Steven; Greszler, Thomas
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c3ee43870h

Theoretical Analysis of Current Distribution in Porous Electrodes
journal, January 1962

  • Newman, John S.; Tobias, Charles W.
  • Journal of The Electrochemical Society, Vol. 109, Issue 12
  • DOI: 10.1149/1.2425269

State of charge monitoring methods for vanadium redox flow battery control
journal, October 2011


Ionic Conductivity of Nonaqueous Solvent-Swollen Ionomer Membranes Based on Fluorosulfonate, Fluorocarboxylate, and Sulfonate Fixed Ion Groups
journal, October 2001

  • Doyle, Marc; Lewittes, Mark E.; Roelofs, Mark G.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 39
  • DOI: 10.1021/jp0038308

Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties
journal, March 2001


Membrane Development for Vanadium Redox Flow Batteries
journal, October 2011


Ion exchange membranes for vanadium redox flow battery (VRB) applications
journal, March 2011

  • Li, Xianfeng; Zhang, Huamin; Mai, Zhensheng
  • Energy & Environmental Science, Vol. 4, Issue 4, p. 1147-1160
  • DOI: 10.1039/c0ee00770f

Ceramic and polymeric solid electrolytes for lithium-ion batteries
journal, August 2010


Capital Cost Sensitivity Analysis of an All-Vanadium Redox-Flow Battery
conference, January 2012

  • Moore, Mark; Watson, Jack; Zawodzinski Jr., Thomas A.
  • 220th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3684787

Works referencing / citing this record:

Materials and Device Constructions for Aqueous Lithium-Sulfur Batteries
journal, March 2018

  • Yun, Sol; Park, So Hyun; Yeon, Jeong Seok
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201707593

Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries
journal, April 2017


Recent Advancements in All-Vanadium Redox Flow Batteries
journal, November 2015

  • Ulaganathan, Mani; Aravindan, Vanchiappan; Yan, Qingyu
  • Advanced Materials Interfaces, Vol. 3, Issue 1
  • DOI: 10.1002/admi.201500309

MetILs 3 : A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids
journal, July 2017

  • Small, Leo J.; Pratt, Harry D.; Staiger, Chad L.
  • Advanced Sustainable Systems, Vol. 1, Issue 9
  • DOI: 10.1002/adsu.201700066

Surface‐Wrinkle‐Modified Graphite Felt with High Effectiveness for Vanadium Redox Flow Batteries
journal, May 2019

  • Chen, Zehua; Gao, Yu; Zhang, Chuanxiang
  • Advanced Electronic Materials, Vol. 5, Issue 7
  • DOI: 10.1002/aelm.201900036

Cyclopropenium Salts as Cyclable, High-Potential Catholytes in Nonaqueous Media
journal, November 2016

  • Sevov, Christo S.; Samaroo, Sharmila K.; Sanford, Melanie S.
  • Advanced Energy Materials, Vol. 7, Issue 5
  • DOI: 10.1002/aenm.201602027

Gradient-Distributed Metal-Organic Framework-Based Porous Membranes for Nonaqueous Redox Flow Batteries
journal, October 2018

  • Peng, Sangshan; Zhang, Leyuan; Zhang, Changkun
  • Advanced Energy Materials, Vol. 8, Issue 33
  • DOI: 10.1002/aenm.201802533

A Long Lifetime Aqueous Organic Solar Flow Battery
journal, July 2019

  • Li, Wenjie; Kerr, Emily; Goulet, Marc‐Antoni
  • Advanced Energy Materials, Vol. 9, Issue 31
  • DOI: 10.1002/aenm.201900918

Comparing velocities and pressures in redox flow batteries with interdigitated and serpentine channels
journal, February 2019

  • Macdonald, Malcolm; Darling, Robert M.
  • AIChE Journal, Vol. 65, Issue 5
  • DOI: 10.1002/aic.16553

Redox-Flow-Batterien: von metallbasierten zu organischen Aktivmaterialien
journal, November 2016

  • Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias
  • Angewandte Chemie, Vol. 129, Issue 3
  • DOI: 10.1002/ange.201604925

Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage
journal, February 2018


Redox-Flow Batteries: From Metals to Organic Redox-Active Materials
journal, November 2016

  • Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias
  • Angewandte Chemie International Edition, Vol. 56, Issue 3
  • DOI: 10.1002/anie.201604925

Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries
journal, January 2017

  • Doris, Sean E.; Ward, Ashleigh L.; Baskin, Artem
  • Angewandte Chemie International Edition, Vol. 56, Issue 6
  • DOI: 10.1002/anie.201610582

Recent Progress in Polysulfide Redox‐Flow Batteries
journal, June 2019

  • Zhang, Sanpei; Guo, Wenjuan; Yang, Fengchang
  • Batteries & Supercaps, Vol. 2, Issue 7
  • DOI: 10.1002/batt.201900056

A High Capacity Aluminum‐Ion Battery Based on Imidazole Hydrochloride Electrolyte
journal, July 2019


Dithiolene Complexes of First‐Row Transition Metals for Symmetric Nonaqueous Redox Flow Batteries
journal, September 2019

  • Hogue, Ross W.; Armstrong, Craig G.; Toghill, Kathryn E.
  • ChemSusChem, Vol. 12, Issue 19
  • DOI: 10.1002/cssc.201901702

Electrochemical Evaluation of a Napthalene Diimide Derivative for Potential Application in Aqueous Organic Redox Flow Batteries
journal, August 2019

  • Wiberg, Cedrik; Owusu, Francis; Wang, Ergang
  • Energy Technology, Vol. 7, Issue 11
  • DOI: 10.1002/ente.201900843

Investigation of Nafion series membranes on the performance of iron‐chromium redox flow battery
journal, September 2019

  • Sun, Chuan‐Yu; Zhang, Huan
  • International Journal of Energy Research
  • DOI: 10.1002/er.4875

Effect of nanofluidic electrolyte on the electrochemically enhanced long‐term efficiency of vanadium redox flow battery
journal, September 2019

  • Kim, Jungmyung; Park, Heesung
  • Energy Storage, Vol. 1, Issue 6
  • DOI: 10.1002/est2.90

Rechargeable High‐Capacity Aluminum‐Nickel Batteries
journal, December 2019


Redox flow batteries—Concepts and chemistries for cost-effective energy storage
journal, March 2018

  • Holland-Cunz, Matthäa Verena; Cording, Faye; Friedl, Jochen
  • Frontiers in Energy, Vol. 12, Issue 2
  • DOI: 10.1007/s11708-018-0552-4

A bipolar nitronyl nitroxide small molecule for an all-organic symmetric redox-flow battery
journal, January 2017

  • Hagemann, Tino; Winsberg, Jan; Häupler, Bernhard
  • NPG Asia Materials, Vol. 9, Issue 1
  • DOI: 10.1038/am.2016.195

Sustainability and in situ monitoring in battery development
journal, December 2016

  • Grey, C. P.; Tarascon, J. M.
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4777

All-polymer particulate slurry batteries
journal, June 2019


An intertemporal decision framework for electrochemical energy storage management
journal, April 2018


Three-dimensional annealed WO 3 nanowire/graphene foam as an electrocatalytic material for all vanadium redox flow batteries
journal, January 2017

  • Kabtamu, Daniel Manaye; Chang, Yu-Chung; Lin, Guan-Yi
  • Sustainable Energy & Fuels, Vol. 1, Issue 10
  • DOI: 10.1039/c7se00271h

Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage
journal, January 2018

  • Gür, Turgut M.
  • Energy & Environmental Science, Vol. 11, Issue 10
  • DOI: 10.1039/c8ee01419a

Synthesis of polythiophene/graphite composites and their enhanced electrochemical performance for aluminum ion batteries
journal, January 2019

  • Zhao, Shimeng; Chen, Haixia; Li, Jialin
  • New Journal of Chemistry, Vol. 43, Issue 37
  • DOI: 10.1039/c9nj03626a

An all organic redox flow battery with high cell voltage
journal, January 2019

  • Huo, Yongjie; Xing, Xueqi; Zhang, Cuijuan
  • RSC Advances, Vol. 9, Issue 23
  • DOI: 10.1039/c9ra01514k

Methanesulfonic acid-based electrode-decoupled vanadium–cerium redox flow battery exhibits significantly improved capacity and cycle life
journal, January 2019

  • Sankarasubramanian, Shrihari; Zhang, Yunzhu; Ramani, Vijay
  • Sustainable Energy & Fuels, Vol. 3, Issue 9
  • DOI: 10.1039/c9se00286c

Progress in the Design of Polyoxovanadate-Alkoxides as Charge Carriers for Nonaqueous Redox Flow Batteries
journal, March 2019


Estimating the cost of organic battery active materials: a case study on anthraquinone disulfonic acid
journal, July 2018

  • Dieterich, Vincent; Milshtein, Jarrod D.; Barton, John L.
  • Translational Materials Research, Vol. 5, Issue 3
  • DOI: 10.1088/2053-1613/aacb0e

Alkaline quinone flow battery
journal, September 2015


Measurement and Computer Simulation of Catholyte Stability in Vanadium Flow Batteries (VFBs)
journal, January 2018

  • Buckley, D. Noel; Oboroceanu, Daniela; Quill, Nathan
  • Journal of The Electrochemical Society, Vol. 165, Issue 14
  • DOI: 10.1149/2.0091814jes

Optimization and Design of the Minimal Architecture Zinc-Bromine Battery Using Insight from a Levelized Cost of Storage Model
journal, January 2018

  • Knehr, Kevin W.; Buline, Robert; Baldwin, Todd
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0151816jes

Exploring the Role of Electrode Microstructure on the Performance of Non-Aqueous Redox Flow Batteries
journal, January 2019

  • Forner-Cuenca, Antoni; Penn, Emily E.; Oliveira, Alexandra M.
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0611910jes

Analysis of Crossover-Induced Capacity Fade in Redox Flow Batteries with Non-Selective Separators
journal, January 2018

  • Nemani, Venkat Pavan; Smith, Kyle C.
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0701813jes

Impact of Corrosion Conditions on Carbon Paper Electrode Morphology and the Performance of a Vanadium Redox Flow Battery
journal, January 2019

  • Nourani, Mahnaz; Zackin, Benjamin I.; Sabarirajan, Dinesh C.
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.1041902jes

Modeling of Ion Crossover in an All-Vanadium Redox Flow Battery with the Interfacial Effect at Membrane/Electrode Interfaces
journal, January 2019

  • Hao, Liang; Wang, Yuanhui; He, Yusong
  • Journal of The Electrochemical Society, Vol. 166, Issue 8
  • DOI: 10.1149/2.1061906jes

Evaluation of Electrospun Fibrous Mats Targeted for Use as Flow Battery Electrodes
journal, January 2017

  • Liu, Selina; Kok, Matt; Kim, Yongwook
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.1301709jes

Transport and Electron Transfer Kinetics of Polyoxovanadate-Alkoxide Clusters
journal, January 2019

  • Kosswattaarachchi, Anjula M.; VanGelder, Lauren E.; Nachtigall, Olaf
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.1351902jes

Redox Active Polymers for Non-Aqueous Redox Flow Batteries: Validation of the Size-Exclusion Approach
journal, January 2017

  • Montoto, Elena C.; Nagarjuna, Gavvalapalli; Moore, Jeffrey S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1511707jes

Towards Production of a Highly Catalytic and Stable Graphene-Wrapped Graphite Felt Electrode for Vanadium Redox Flow Batteries
journal, December 2018

  • Mousavihashemi, Seyedabolfazl; Murcia-López, Sebastián; Hosseini, Mir
  • Batteries, Vol. 4, Issue 4
  • DOI: 10.3390/batteries4040063

A One-Dimensional Stack Model for Redox Flow Battery Analysis and Operation
journal, February 2019


Consequences of ligand derivatization on the electronic properties of polyoxovanadate-alkoxide clusters
text, January 2019


Sodium-Sulfur Flow Battery for Low-Cost Electrical Storage
journal, January 2018

  • Yang, Fengchang; Mousavie, Seyed Mohammad Ali; Oh, Tae K.
  • Advanced Energy Materials, Vol. 8, Issue 11
  • DOI: 10.1002/aenm.201701991

Linked Picolinamide Nickel Complexes as Redox Carriers for Nonaqueous Flow Batteries
journal, February 2019


A General Technoeconomic Model for Evaluating Emerging Electrolytic Processes
journal, December 2019

  • Orella, Michael J.; Brown, Steven M.; Leonard, McLain E.
  • Energy Technology, Vol. 8, Issue 11
  • DOI: 10.1002/ente.201900994

Development and study of solid polymer electrolytes based on PVdF-HFP/PVAc: Mg (ClO4)2 for Mg ion batteries
journal, July 2018

  • Ponmani, S.; Prabhu, M. Ramesh
  • Journal of Materials Science: Materials in Electronics, Vol. 29, Issue 17
  • DOI: 10.1007/s10854-018-9649-0

Nanoporous aramid nanofibre separators for nonaqueous redox flow batteries
journal, October 2018


Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage
journal, December 2019


Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility
journal, December 2016

  • Wedege, Kristina; Dražević, Emil; Konya, Denes
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep39101

Bioinspired, high-stability, nonaqueous redox flow battery electrolytes
journal, January 2017

  • Huang, Haobo; Howland, Rachael; Agar, Ertan
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/c7ta00365j

Emerging investigator series: capacitive deionization for selective removal of nitrate and perchlorate: impacts of ion selectivity and operating constraints on treatment costs
journal, January 2020

  • Hand, Steven; Cusick, Roland D.
  • Environmental Science: Water Research & Technology, Vol. 6, Issue 4
  • DOI: 10.1039/c9ew01105f

Different positive electrode materials in organic and aqueous systems for aluminium ion batteries
journal, January 2019

  • Ru, Yue; Zheng, Shasha; Xue, Huaiguo
  • Journal of Materials Chemistry A, Vol. 7, Issue 24
  • DOI: 10.1039/c9ta01550g

Progress and directions in low-cost redox-flow batteries for large-scale energy storage
journal, January 2017


An Electrochemical Study on the Cathode of the Intermediate Temperature Tubular Sodium-Sulfur (NaS) Battery
journal, January 2019

  • Nikiforidis, G.; Jongerden, G. J.; Jongerden, E. F.
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.0491902jes

Consequences of ligand derivatization on the electronic properties of polyoxovanadate-alkoxide clusters
text, January 2019


Value of storage technologies for wind and solar energy
journal, June 2016

  • Braff, William A.; Mueller, Joshua M.; Trancik, Jessika E.
  • Nature Climate Change, Vol. 6, Issue 10
  • DOI: 10.1038/nclimate3045

A cobalt sulfide cluster-based catholyte for aqueous flow battery applications
journal, January 2018

  • Freeman, Matthew B.; Wang, Le; Jones, Daniel S.
  • Journal of Materials Chemistry A, Vol. 6, Issue 44
  • DOI: 10.1039/c8ta05788e

Consequences of ligand derivatization on the electronic properties of polyoxovanadate-alkoxide clusters
text, January 2019


Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage
journal, February 2018

  • Ma, Ting; Pan, Zeng; Miao, Licheng
  • Angewandte Chemie International Edition, Vol. 57, Issue 12
  • DOI: 10.1002/anie.201713423

A Unique Single‐Ion Mediation Approach for Crossover‐Free Nonaqueous Redox Flow Batteries with a Na + ‐Ion Solid Electrolyte
journal, November 2019


Critical Review—Experimental Diagnostics and Material Characterization Techniques Used on Redox Flow Batteries
journal, January 2018

  • Gandomi, Y. Ashraf; Aaron, D. S.; Houser, J. R.
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0601805jes