DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

Abstract

Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that themore » hot component drives the electromagnetic lower band chorus; the gap at ~Ωe/2 is a natural consequence of the growth of two whistler modes with different properties.« less

Authors:
 [1];  [1];  [1];  [1];  [2];  [3];  [3];  [3];  [1];  [4];  [5];  [4];  [1];  [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Space Science Institute, Boulder, CO (United States)
  3. Univ. of Iowa, Iowa City, IA (United States). Dept. of Physics and Astronomy.
  4. Auburn Univ., Auburn, AL (United States). Dept. of Physics.
  5. NASA/Goddard Space Flight Center, Greenbelt, MD (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1212455
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Space Physics
Additional Journal Information:
Journal Volume: 119; Journal Issue: 10; Journal ID: ISSN 2169-9380
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES

Citation Formats

Fu, Xiangrong, Cowee, Misa M., Friedel, Reinhard H., Funsten, Herbert O., Gary, S. Peter, Hospodarsky, George B., Kletzing, Craig, Kurth, William, Larsen, Brian A., Liu, Kaijun, MacDonald, Elizabeth A., Min, Kyungguk, Reeves, Geoffrey D., Skoug, Ruth M., and Winske, Dan. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations. United States: N. p., 2014. Web. doi:10.1002/2014JA020364.
Fu, Xiangrong, Cowee, Misa M., Friedel, Reinhard H., Funsten, Herbert O., Gary, S. Peter, Hospodarsky, George B., Kletzing, Craig, Kurth, William, Larsen, Brian A., Liu, Kaijun, MacDonald, Elizabeth A., Min, Kyungguk, Reeves, Geoffrey D., Skoug, Ruth M., & Winske, Dan. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations. United States. https://doi.org/10.1002/2014JA020364
Fu, Xiangrong, Cowee, Misa M., Friedel, Reinhard H., Funsten, Herbert O., Gary, S. Peter, Hospodarsky, George B., Kletzing, Craig, Kurth, William, Larsen, Brian A., Liu, Kaijun, MacDonald, Elizabeth A., Min, Kyungguk, Reeves, Geoffrey D., Skoug, Ruth M., and Winske, Dan. Wed . "Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations". United States. https://doi.org/10.1002/2014JA020364. https://www.osti.gov/servlets/purl/1212455.
@article{osti_1212455,
title = {Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations},
author = {Fu, Xiangrong and Cowee, Misa M. and Friedel, Reinhard H. and Funsten, Herbert O. and Gary, S. Peter and Hospodarsky, George B. and Kletzing, Craig and Kurth, William and Larsen, Brian A. and Liu, Kaijun and MacDonald, Elizabeth A. and Min, Kyungguk and Reeves, Geoffrey D. and Skoug, Ruth M. and Winske, Dan},
abstractNote = {Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~Ωe/2 is a natural consequence of the growth of two whistler modes with different properties.},
doi = {10.1002/2014JA020364},
journal = {Journal of Geophysical Research. Space Physics},
number = 10,
volume = 119,
place = {United States},
year = {Wed Oct 22 00:00:00 EDT 2014},
month = {Wed Oct 22 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 93 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Correction to “A statistical study of the propagation characteristics of whistler waves observed by Cluster”
journal, December 2012

  • Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Khotyaintsev, Yuri V.
  • Geophysical Research Letters, Vol. 39, Issue 24
  • DOI: 10.1029/2012GL054320

Source regions of banded chorus
journal, January 2009

  • Bell, T. F.; Inan, U. S.; Haque, N.
  • Geophysical Research Letters, Vol. 36, Issue 11
  • DOI: 10.1029/2009GL037629

Energetic electrons in dipolarization events: Spatial properties and anisotropy
journal, May 2014

  • Birn, J.; Runov, A.; Hesse, M.
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 5
  • DOI: 10.1002/2013JA019738

The spectral extent of chorus in the off-equatorial magnetosphere: CHORUS SPECTRAL EXTENT
journal, April 2013

  • Bunch, N. L.; Spasojevic, M.; Shprits, Y. Y.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 4
  • DOI: 10.1029/2012JA018182

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission
journal, March 2013


Theory of Space Plasma Microinstabilities
book, January 2009


Whistler instability: Electron anisotropy upper bound
journal, May 1996

  • Gary, S. Peter; Wang, Joseph
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A5
  • DOI: 10.1029/96JA00323

Whistler anisotropy instability at low electron β: Particle-in-cell simulations
journal, August 2011

  • Gary, S. Peter; Liu, Kaijun; Winske, Dan
  • Physics of Plasmas, Vol. 18, Issue 8
  • DOI: 10.1063/1.3610378

Whistler anisotropy instability with a cold electron component: Linear theory: BRIEF REPORT
journal, July 2012

  • Gary, S. Peter; Liu, Kaijun; Denton, Richard E.
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A7
  • DOI: 10.1029/2012JA017631

Nonlinear damping of chorus emissions at local half cyclotron frequencies observed by Geotail at L > 9
journal, June 2014

  • Habagishi, Toshihiro; Yagitani, Satoshi; Omura, Yoshiharu
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 6
  • DOI: 10.1002/2013JA019696

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP
journal, June 2013


THEMIS observation of chorus elements without a gap at half the gyrofrequency: CONTINUOUS RISING TONE CHORUS
journal, November 2012

  • Kurita, S.; Katoh, Y.; Omura, Y.
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A11
  • DOI: 10.1029/2012JA018076

THEMIS analysis of observed equatorial electron distributions responsible for the chorus excitation: ELECTRON DISTRIBUTIONS FOR CHORUS WAVES
journal, June 2010

  • Li, W.; Thorne, R. M.; Nishimura, Y.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A6
  • DOI: 10.1029/2009JA014845

Characteristics of the Poynting flux and wave normal vectors of whistler-mode waves observed on THEMIS: WHISTLER WAVE PROPAGATION PROPERTIES
journal, April 2013

  • Li, Wen; Bortnik, J.; Thorne, R. M.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 4
  • DOI: 10.1002/jgra.50176

Excitation of banded whistler waves in the magnetosphere: EXCITATION OF BANDED WHISTLERS
journal, July 2011

  • Liu, Kaijun; Gary, S. Peter; Winske, Dan
  • Geophysical Research Letters, Vol. 38, Issue 14
  • DOI: 10.1029/2011GL048375

Superposed epoch analysis of a whistler instability criterion at geosynchronous orbit during geomagnetic storms
journal, November 2008

  • MacDonald, E. A.; Denton, M. H.; Thomsen, M. F.
  • Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 70, Issue 14
  • DOI: 10.1016/j.jastp.2008.03.021

Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies
journal, July 2001

  • Meredith, Nigel P.; Horne, Richard B.; Anderson, Roger R.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A7
  • DOI: 10.1029/2000JA900156

Survey of upper band chorus and ECH waves: Implications for the diffuse aurora: SURVEY OF UPPER BAND CHORUS and ECH WAVES
journal, July 2009

  • Meredith, Nigel P.; Horne, Richard B.; Thorne, Richard M.
  • Journal of Geophysical Research: Space Physics, Vol. 114, Issue A7
  • DOI: 10.1029/2009JA014230

Global model of lower band and upper band chorus from multiple satellite observations: GLOBAL MODEL OF WHISTLER MODE CHORUS
journal, October 2012

  • Meredith, Nigel P.; Horne, Richard B.; Sicard-Piet, Angélica
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A10
  • DOI: 10.1029/2012JA017978

Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere: NONLINEAR MECHANISMS OF CHORUS EMISSIONS
journal, July 2009

  • Omura, Yoshiharu; Hikishima, Mitsuru; Katoh, Yuto
  • Journal of Geophysical Research: Space Physics, Vol. 114, Issue A7
  • DOI: 10.1029/2009JA014206

Electron Acceleration in the Heart of the Van Allen Radiation Belts
journal, July 2013


Spatio-temporal structure of storm-time chorus
journal, January 2003


Wave-particle interactions in the equatorial source region of whistler-mode emissions: WAVE-PARTICLE INTERACTIONS
journal, August 2010

  • Santolík, O.; Gurnett, D. A.; Pickett, J. S.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A8
  • DOI: 10.1029/2009JA015218

Fine structure of large-amplitude chorus wave packets: STRUCTURE OF CHORUS WAVE PACKETS
journal, January 2014

  • Santolík, O.; Kletzing, C. A.; Kurth, W. S.
  • Geophysical Research Letters, Vol. 41, Issue 2
  • DOI: 10.1002/2013GL058889

Magnetospheric chorus emissions: A review
journal, May 1992


Generation of whistler mode emissions in the inner magnetosphere: An event study: GENERATION OF WHISTLER WAVES
journal, August 2010

  • Schriver, D.; Ashour-Abdalla, M.; Coroniti, F. V.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A8
  • DOI: 10.1029/2009JA014932

Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons
journal, June 2014

  • Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 6
  • DOI: 10.1002/2014JA019919

Radiation belt dynamics: The importance of wave-particle interactions: FRONTIER
journal, November 2010

  • Thorne, Richard Mansergh
  • Geophysical Research Letters, Vol. 37, Issue 22
  • DOI: 10.1029/2010GL044990

Scattering by chorus waves as the dominant cause of diffuse auroral precipitation
journal, October 2010

  • Thorne, Richard M.; Ni, Binbin; Tao, Xin
  • Nature, Vol. 467, Issue 7318
  • DOI: 10.1038/nature09467

Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus
journal, December 2013


The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission
journal, October 2013


The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission
book, January 2013


Theory of space plasma microinstabilities
journal, March 1995


Works referencing / citing this record:

Lower Band Cascade of Whistler Waves Excited by Anisotropic Hot Electrons: One‐Dimensional PIC Simulations
journal, October 2017

  • Chen, Huayue; Gao, Xinliang; Lu, Quanming
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 10
  • DOI: 10.1002/2017ja024513

Oblique Whistler-Mode Waves in the Earth’s Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics
journal, April 2016

  • Artemyev, Anton; Agapitov, Oleksiy; Mourenas, Didier
  • Space Science Reviews, Vol. 200, Issue 1-4
  • DOI: 10.1007/s11214-016-0252-5

Remote Sensing of Radiation Belt Energetic Electrons Using Lightning Triggered Upper Band Chorus
journal, January 2019

  • Hosseini, Poorya; Gołkowski, Mark; Harid, Vijay
  • Geophysical Research Letters, Vol. 46, Issue 1
  • DOI: 10.1029/2018gl081391

Analytical Chorus Wave Model Derived from Van Allen Probe Observations
journal, February 2019

  • Wang, Dedong; Shprits, Yuri Y.; Zhelavskaya, Irina S.
  • Journal of Geophysical Research: Space Physics, Vol. 124, Issue 2
  • DOI: 10.1029/2018ja026183

The Effects of Thermal Electrons on Whistler Mode Waves Excited by Anisotropic Hot Electrons: Linear Theory and 2‐D PIC Simulations
journal, July 2019

  • Fan, Kai; Gao, Xinliang; Lu, Quanming
  • Journal of Geophysical Research: Space Physics, Vol. 124, Issue 7
  • DOI: 10.1029/2019ja026463

Periodic Excitation of Chorus and ECH Waves Modulated by Ultralow Frequency Compressions
journal, November 2019

  • Zhang, Xiao‐Jia; Chen, Lunjin; Artemyev, Anton V.
  • Journal of Geophysical Research: Space Physics, Vol. 124, Issue 11
  • DOI: 10.1029/2019ja027201

Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy
journal, May 2015

  • Artemyev, A. V.; Agapitov, O. V.; Mourenas, D.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8143

Origin of two-band chorus in the radiation belt of Earth
journal, October 2019


Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes
journal, June 2015

  • Artemyev, A. V.; Mourenas, D.; Agapitov, O. V.
  • Physics of Plasmas, Vol. 22, Issue 6
  • DOI: 10.1063/1.4922061

Polarization of obliquely propagating whistler mode waves based on linear dispersion theory
journal, December 2016

  • Remya, B.; Lee, K. H.; Lee, L. C.
  • Physics of Plasmas, Vol. 23, Issue 12
  • DOI: 10.1063/1.4972534

Electron-acoustic solitary waves in the Earth's inner magnetosphere
journal, February 2018

  • Dillard, C. S.; Vasko, I. Y.; Mozer, F. S.
  • Physics of Plasmas, Vol. 25, Issue 2
  • DOI: 10.1063/1.5007907

Theoretical analysis on lower band cascade as a mechanism for multiband chorus in the Earth’s magnetosphere
journal, May 2018

  • Gao, Xinliang; Lu, Quanming; Wang, Shaojie
  • AIP Advances, Vol. 8, Issue 5
  • DOI: 10.1063/1.5025507

An excitation mechanism of electromagnetic pulses by relativistic electrons in the brown dwarfs rarefied magnetosphere
journal, August 2018

  • Bespalov, Peter A.; Savina, Olga N.
  • Monthly Notices of the Royal Astronomical Society, Vol. 480, Issue 4
  • DOI: 10.1093/mnras/sty2204

An excitation mechanism for discrete chorus elements in the magnetosphere
journal, January 2018


Excitation of chorus with small wave normal angles due to beam pulse amplifier (BPA) mechanism in density ducts
journal, January 2019


Remote Sensing of Radiation Belt Energetic Electrons Using Lightning Triggered Upper Band Chorus
conference, January 2019

  • Hosseini, Poorya; Golkowski, Mark; Harid, Vijay
  • 2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)
  • DOI: 10.23919/usnc-ursi-nrsm.2019.8712989

An excitation mechanism for discrete chorus elements in the magnetosphere
journal, May 2018