DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural and functional adaptation of vancomycin resistance VanT serine racemases

Abstract

Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl–D-alanine target of peptidoglycan precursors with D-alanyl–D-lactate or D-alanyl–D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for theL-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overallmore » rate of D-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria.« less

Authors:
 [1];  [2];  [2];  [2];  [2];  [1]
  1. Unite des Agents Antibacteriens, Paris (France)
  2. Univ. of Toronto, Toronto, ON (Canada); Center for Structural Genomics of Infectious Diseases (CSGID), New York, NY (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Institutes of Health (NIH)
OSTI Identifier:
1212205
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
mBio (Online)
Additional Journal Information:
Journal Name: mBio (Online); Journal Volume: 6; Journal Issue: 4; Journal ID: ISSN 2150-7511
Publisher:
American Society for Microbiology
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Meziane-Cherif, Djalal, Stogios, Peter J., Evdokimova, Elena, Egorova, Olga, Savchenko, Alexei, and Courvalin, Patrice. Structural and functional adaptation of vancomycin resistance VanT serine racemases. United States: N. p., 2015. Web. doi:10.1128/mBio.00806-15.
Meziane-Cherif, Djalal, Stogios, Peter J., Evdokimova, Elena, Egorova, Olga, Savchenko, Alexei, & Courvalin, Patrice. Structural and functional adaptation of vancomycin resistance VanT serine racemases. United States. https://doi.org/10.1128/mBio.00806-15
Meziane-Cherif, Djalal, Stogios, Peter J., Evdokimova, Elena, Egorova, Olga, Savchenko, Alexei, and Courvalin, Patrice. Tue . "Structural and functional adaptation of vancomycin resistance VanT serine racemases". United States. https://doi.org/10.1128/mBio.00806-15. https://www.osti.gov/servlets/purl/1212205.
@article{osti_1212205,
title = {Structural and functional adaptation of vancomycin resistance VanT serine racemases},
author = {Meziane-Cherif, Djalal and Stogios, Peter J. and Evdokimova, Elena and Egorova, Olga and Savchenko, Alexei and Courvalin, Patrice},
abstractNote = {Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl–D-alanine target of peptidoglycan precursors with D-alanyl–D-lactate or D-alanyl–D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for theL-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of D-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria.},
doi = {10.1128/mBio.00806-15},
journal = {mBio (Online)},
number = 4,
volume = 6,
place = {United States},
year = {Tue Aug 11 00:00:00 EDT 2015},
month = {Tue Aug 11 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Molecular Characterization of Enterococcus faecalis N06-0364 with Low-Level Vancomycin Resistance Harboring a Novel d-Ala-d-Ser Gene Cluster, vanL
journal, May 2008

  • Boyd, David A.; Willey, Barbara M.; Fawcett, Darlene
  • Antimicrobial Agents and Chemotherapy, Vol. 52, Issue 7
  • DOI: 10.1128/AAC.01516-07

A Family of LIC Vectors for High-Throughput Cloning and Purification of Proteins
book, January 2009


Drug Discovery Targeting Amino Acid Racemases
journal, November 2011

  • Conti, Paola; Tamborini, Lucia; Pinto, Andrea
  • Chemical Reviews, Vol. 111, Issue 11
  • DOI: 10.1021/cr2000702

Structural basis for the broad specificity of a new family of amino-acid racemases
journal, December 2013

  • Espaillat, Akbar; Carrasco-López, César; Bernardo-García, Noelia
  • Acta Crystallographica Section D Biological Crystallography, Vol. 70, Issue 1
  • DOI: 10.1107/S1399004713024838

vanC Cluster of Vancomycin-ResistantEnterococcus gallinarum BM4174
journal, June 2000


Dali server: conservation mapping in 3D
journal, May 2010

  • Holm, Liisa; Rosenstr�m, P�ivi
  • Nucleic Acids Research, Vol. 38, Issue suppl_2
  • DOI: 10.1093/nar/gkq366

Structural and biochemical analyses of alanine racemase from the multidrug-resistant Clostridium difficile strain 630
journal, June 2014

  • Asojo, Oluwatoyin A.; Nelson, Sarah K.; Mootien, Sara
  • Acta Crystallographica Section D Biological Crystallography, Vol. 70, Issue 7
  • DOI: 10.1107/S1399004714009419

Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions
journal, November 2004

  • Krissinel, E.; Henrick, K.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12
  • DOI: 10.1107/S0907444904026460

Structural insights into the alanine racemase from Enterococcus faecalis
journal, July 2009

  • Priyadarshi, Amit; Lee, Eun Hye; Sung, Min Woo
  • Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, Vol. 1794, Issue 7
  • DOI: 10.1016/j.bbapap.2009.03.006

Reaction Mechanism of Alanine Racemase from Bacillus stearothermophilus: X-RAY CRYSTALLOGRAPHIC STUDIES OF THE ENZYME BOUND WITH N -(5′-PHOSPHOPYRIDOXYL)ALANINE
journal, March 2002

  • Watanabe, Akira; Yoshimura, Tohru; Mikami, Bunzo
  • Journal of Biological Chemistry, Vol. 277, Issue 21
  • DOI: 10.1074/jbc.M201615200

Role of Lysine 39 of Alanine Racemase from Bacillus stearothermophilus That Binds Pyridoxal 5′-Phosphate: CHEMICAL RESCUE STUDIES OF Lys 39 → Ala MUTANT
journal, February 1999

  • Watababe, Akira; Kurokawa, Yoichi; Yoshimura, Tohru
  • Journal of Biological Chemistry, Vol. 274, Issue 7
  • DOI: 10.1074/jbc.274.7.4189

D-Amino Acids Trigger Biofilm Disassembly
journal, April 2010


Structural basis for the evolution of vancomycin resistance D,D-peptidases
journal, April 2014

  • Meziane-Cherif, D.; Stogios, P. J.; Evdokimova, E.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 16
  • DOI: 10.1073/pnas.1402259111

Enzymatic characterization and crystal structure analysis of the D-alanine-D-alanine ligase from Helicobacter pylori
journal, March 2008

  • Wu, Dalei; Zhang, Liang; Kong, Yunhua
  • Proteins: Structure, Function, and Bioinformatics, Vol. 72, Issue 4
  • DOI: 10.1002/prot.22009

Glycopeptide antibiotics: Back to the future
journal, August 2014

  • Butler, Mark S.; Hansford, Karl A.; Blaskovich, Mark A. T.
  • The Journal of Antibiotics, Vol. 67, Issue 9
  • DOI: 10.1038/ja.2014.111

The Genomic Enzymology of Antibiotic Resistance
journal, December 2010


RND-Type Efflux Pumps in Multidrug-Resistant Clinical Isolates of Acinetobacter baumannii: Major Role for AdeABC Overexpression and AdeRS Mutations
journal, April 2013

  • Yoon, Eun-Jeong; Courvalin, Patrice; Grillot-Courvalin, Catherine
  • Antimicrobial Agents and Chemotherapy, Vol. 57, Issue 7
  • DOI: 10.1128/AAC.02556-12

Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174
journal, April 1999


Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174
journal, July 2000


Evolution of the serine β-lactamases: past, present and future
journal, April 2004


Vancomycin Resistance in Gram-Positive Cocci
journal, January 2006

  • Courvalin, Patrice
  • Clinical Infectious Diseases, Vol. 42, Issue Supplement_1
  • DOI: 10.1086/491711

HKL -3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes
journal, July 2006

  • Minor, Wladek; Cymborowski, Marcin; Otwinowski, Zbyszek
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 8
  • DOI: 10.1107/S0907444906019949

Crystal Structures of Lysine-Preferred Racemases, the Non-Antibiotic Selectable Markers for Transgenic Plants
journal, October 2012


Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/S0907444904019158

Deciphering key features in protein structures with the new ENDscript server
journal, April 2014

  • Robert, Xavier; Gouet, Patrice
  • Nucleic Acids Research, Vol. 42, Issue W1
  • DOI: 10.1093/nar/gku316

Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci
journal, September 2010

  • Foucault, M. -L.; Depardieu, F.; Courvalin, P.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 39
  • DOI: 10.1073/pnas.1006855107

Role of the transmembrane domain of the VanT serine racemase in resistance to vancomycin in Enterococcus gallinarum BM4174
journal, February 2003

  • Arias, C. A.
  • Journal of Antimicrobial Chemotherapy, Vol. 51, Issue 3
  • DOI: 10.1093/jac/dkg128

MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods
journal, May 2011

  • Tamura, K.; Peterson, D.; Peterson, N.
  • Molecular Biology and Evolution, Vol. 28, Issue 10
  • DOI: 10.1093/molbev/msr121

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Emerging knowledge of regulatory roles of d-amino acids in bacteria
journal, December 2010

  • Cava, Felipe; Lam, Hubert; de Pedro, Miguel A.
  • Cellular and Molecular Life Sciences, Vol. 68, Issue 5
  • DOI: 10.1007/s00018-010-0571-8

Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega
journal, January 2011

  • Sievers, Fabian; Wilm, Andreas; Dineen, David
  • Molecular Systems Biology, Vol. 7, Issue 1
  • DOI: 10.1038/msb.2011.75

Structural and Functional Characterization of VanG d-Ala:d-Ser Ligase Associated with Vancomycin Resistance in Enterococcus faecalis
journal, September 2012

  • Meziane-Cherif, Djalal; Saul, Frederick A.; Haouz, Ahmed
  • Journal of Biological Chemistry, Vol. 287, Issue 45
  • DOI: 10.1074/jbc.M112.405522

Structure, biochemistry and mechanism of action of glycopeptide antibiotics
journal, November 1989

  • Reynolds, P. E.
  • European Journal of Clinical Microbiology & Infectious Diseases, Vol. 8, Issue 11
  • DOI: 10.1007/BF01967563

The vanG glycopeptide resistance operon from Enterococcus faecalis revisited: Vancomycin resistance in enterococci
journal, September 2003


Structural and Molecular Basis for Resistance to Aminoglycoside Antibiotics by the Adenylyltransferase ANT(2″)-Ia
journal, January 2015


Biochemical and structural characterization of alanine racemase from Bacillus anthracis (Ames)
journal, January 2009

  • Couñago, Rafael M.; Davlieva, Milya; Strych, Ulrich
  • BMC Structural Biology, Vol. 9, Issue 1
  • DOI: 10.1186/1472-6807-9-53

The bifunctional enzymes of antibiotic resistance
journal, October 2009

  • Zhang, Weilie; Fisher, Jed F.; Mobashery, Shahriar
  • Current Opinion in Microbiology, Vol. 12, Issue 5
  • DOI: 10.1016/j.mib.2009.06.013

Vancomycin Resistance in Enterococci Due to Synthesis of Precursors Terminating in d-Alanyl-d-Serine
journal, January 2005


vanE Gene Cluster of Vancomycin-Resistant Enterococcus faecalis BM4405
journal, December 2002


d-Ala-d-Ser VanN-Type Transferable Vancomycin Resistance in Enterococcus faecium
journal, August 2011

  • Lebreton, François; Depardieu, Florence; Bourdon, Nancy
  • Antimicrobial Agents and Chemotherapy, Vol. 55, Issue 10
  • DOI: 10.1128/AAC.00714-11

Works referencing / citing this record:

Structural characterization of aminoglycoside 4′‐ O ‐adenylyltransferase ANT(4′)‐IIb from Pseudomonas aeruginosa
journal, January 2020

  • Semper, Cameron; Stogios, Peter; Meziane‐Cherif, Djalal
  • Protein Science, Vol. 29, Issue 3
  • DOI: 10.1002/pro.3815

Environmental roles of microbial amino acid racemases: Microbial amino acid racemases
journal, December 2015


Exploring Molecular Docking Studies of Alanine Racemase Inhibitors from Elettaria cardamomum
journal, October 2019


Production of membrane proteins for characterisation of their pheromone-sensing and antimicrobial resistance functions
journal, July 2018

  • Azam, Aalishaa A.; Kinder, Jean M.; Khan, G. Nasir
  • European Biophysics Journal, Vol. 47, Issue 7
  • DOI: 10.1007/s00249-018-1325-z

Molecular mechanisms of vancomycin resistance
journal, January 2020

  • Stogios, Peter J.; Savchenko, Alexei
  • Protein Science, Vol. 29, Issue 3
  • DOI: 10.1002/pro.3819