DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae

Abstract

The nonoxidative decarboxylation of aromatic acids occurs in a range of microbes and is of interest for bioprocessing and metabolic engineering. Although phenolic acid decarboxylases provide useful tools for bioindustrial applications, the molecular bases for how these enzymes function are only beginning to be examined. Here we present the 2.35-Å-resolution X-ray crystal structure of the ferulic acid decarboxylase (FDC1; UbiD) from Saccharomyces cerevisiae. FDC1 shares structural similarity with the UbiD family of enzymes that are involved in ubiquinone biosynthesis. The position of 4-vinylphenol, the product of p-coumaric acid decarboxylation, in the structure identifies a large hydrophobic cavity as the active site. Differences in the β2e-α5 loop of chains in the crystal structure suggest that the conformational flexibility of this loop allows access to the active site. The structure also implicates Glu285 as the general base in the nonoxidative decarboxylation reaction catalyzed by FDC1. Biochemical analysis showed a loss of enzymatic activity in the E285A mutant. Modeling of 3-methoxy-4-hydroxy-5-decaprenylbenzoate, a partial structure of the physiological UbiD substrate, in the binding site suggests that an ~30-Å-long pocket adjacent to the catalytic site may accommodate the isoprenoid tail of the substrate needed for ubiquinone biosynthesis in yeast. The three-dimensional structure of yeast FDC1more » provides a template for guiding protein engineering studies aimed at optimizing the efficiency of aromatic acid decarboxylation reactions in bioindustrial applications.« less

Authors:
 [1];  [2];  [2];  [3]
  1. Conagen, Inc., Bedford, MA (United States)
  2. Washington Univ., St. Louis, MO (United States)
  3. Conagen, Inc., Bedford, MA (United States); Wuxi NewWay, Jiangsu (China)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1208684
Grant/Contract Number:  
AC02-06CH11357; 2013AA102801
Resource Type:
Accepted Manuscript
Journal Name:
Applied and Environmental Microbiology
Additional Journal Information:
Journal Volume: 81; Journal Issue: 12; Journal ID: ISSN 0099-2240
Publisher:
American Society for Microbiology
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Bhuiya, Mohammad Wadud, Lee, Soon Goo, Jez, Joseph M., and Yu, Oliver. Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae. United States: N. p., 2015. Web. doi:10.1128/aem.00762-15.
Bhuiya, Mohammad Wadud, Lee, Soon Goo, Jez, Joseph M., & Yu, Oliver. Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae. United States. https://doi.org/10.1128/aem.00762-15
Bhuiya, Mohammad Wadud, Lee, Soon Goo, Jez, Joseph M., and Yu, Oliver. Fri . "Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae". United States. https://doi.org/10.1128/aem.00762-15. https://www.osti.gov/servlets/purl/1208684.
@article{osti_1208684,
title = {Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae},
author = {Bhuiya, Mohammad Wadud and Lee, Soon Goo and Jez, Joseph M. and Yu, Oliver},
abstractNote = {The nonoxidative decarboxylation of aromatic acids occurs in a range of microbes and is of interest for bioprocessing and metabolic engineering. Although phenolic acid decarboxylases provide useful tools for bioindustrial applications, the molecular bases for how these enzymes function are only beginning to be examined. Here we present the 2.35-Å-resolution X-ray crystal structure of the ferulic acid decarboxylase (FDC1; UbiD) from Saccharomyces cerevisiae. FDC1 shares structural similarity with the UbiD family of enzymes that are involved in ubiquinone biosynthesis. The position of 4-vinylphenol, the product of p-coumaric acid decarboxylation, in the structure identifies a large hydrophobic cavity as the active site. Differences in the β2e-α5 loop of chains in the crystal structure suggest that the conformational flexibility of this loop allows access to the active site. The structure also implicates Glu285 as the general base in the nonoxidative decarboxylation reaction catalyzed by FDC1. Biochemical analysis showed a loss of enzymatic activity in the E285A mutant. Modeling of 3-methoxy-4-hydroxy-5-decaprenylbenzoate, a partial structure of the physiological UbiD substrate, in the binding site suggests that an ~30-Å-long pocket adjacent to the catalytic site may accommodate the isoprenoid tail of the substrate needed for ubiquinone biosynthesis in yeast. The three-dimensional structure of yeast FDC1 provides a template for guiding protein engineering studies aimed at optimizing the efficiency of aromatic acid decarboxylation reactions in bioindustrial applications.},
doi = {10.1128/aem.00762-15},
journal = {Applied and Environmental Microbiology},
number = 12,
volume = 81,
place = {United States},
year = {Fri Apr 10 00:00:00 EDT 2015},
month = {Fri Apr 10 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 26 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in Saccharomyces cerevisiae
journal, May 1994


p -Coumaric acid decarboxylase from Lactobacillus plantarum : Structural insights into the active site and decarboxylation catalytic mechanism
journal, January 2010

  • Rodríguez, Héctor; Angulo, Iván; de las Rivas, Blanca
  • Proteins: Structure, Function, and Bioinformatics
  • DOI: 10.1002/prot.22684

A Coenzyme-Independent Decarboxylase/Oxygenase Cascade for the Efficient Synthesis of Vanillin
journal, August 2014


Dali server: conservation mapping in 3D
journal, May 2010

  • Holm, Liisa; Rosenstr�m, P�ivi
  • Nucleic Acids Research, Vol. 38, Issue suppl_2
  • DOI: 10.1093/nar/gkq366

Rapid isolation of yeast genomic DNA: Bust n' Grab
journal, January 2004

  • Harju, Susanna; Fedosyuk, Halyna; Peterson, Kenneth R.
  • BMC Biotechnology, Vol. 4, Issue 1, p. 8
  • DOI: 10.1186/1472-6750-4-8

I-TASSER: a unified platform for automated protein structure and function prediction
journal, March 2010

  • Roy, Ambrish; Kucukural, Alper; Zhang, Yang
  • Nature Protocols, Vol. 5, Issue 4
  • DOI: 10.1038/nprot.2010.5

Structural Basis of Enzymatic Activity for the Ferulic Acid Decarboxylase (FADase) from Enterobacter sp. Px6-4
journal, January 2011


Structural Insights into the UbiD Protein Family from the Crystal Structure of PA0254 from Pseudomonas aeruginosa
journal, May 2013


Identification of the ubiD Gene on theEscherichia coli Chromosome
journal, November 2000


Contributions of conserved serine and tyrosine residues to catalysis, ligand binding, and cofactor processing in the active site of tyrosine ammonia lyase
journal, May 2008


New advances in coenzyme Q biosynthesis
journal, September 2000


Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae
journal, August 2014


Structure of PA4019, a putative aromatic acid decarboxylase from Pseudomonas aeruginosa
journal, September 2011

  • Kopec, Jolanta; Schnell, Robert; Schneider, Gunter
  • Acta Crystallographica Section F Structural Biology and Crystallization Communications, Vol. 67, Issue 10
  • DOI: 10.1107/S174430911102923X

Biocatalytic Syntheses of Aromatics from D-Glucose: Renewable Microbial Sources of Aromatic Compounds
journal, October 1995


Purification and characterization of a ferulic acid decarboxylase from Pseudomonas fluorescens.
journal, January 1994


Stereochemically Specific Proton Transfer in Decarboxylation of 4-Hydroxycinnamic Acids by 4-Hydroxycinnamate Decarboxylase fromKlebsiella oxytoca
journal, November 1998

  • Hashidoko, Yasuyuki; Tahara, Satoshi
  • Archives of Biochemistry and Biophysics, Vol. 359, Issue 2
  • DOI: 10.1006/abbi.1998.0911

Cloning, sequencing, and overexpression in Escherichia coli of the Enterobacter sp. Px6-4 gene for ferulic acid decarboxylase
journal, November 2010

  • Gu, Wen; Li, Xuemei; Huang, Jingwen
  • Applied Microbiology and Biotechnology, Vol. 89, Issue 6
  • DOI: 10.1007/s00253-010-2978-4

Gene Cloning, Transcriptional Analysis, Purification, and Characterization of Phenolic Acid Decarboxylase from Bacillus subtilis
journal, April 1998

  • Cavin, Jean-François; Dartois, Véronique; Diviès, Charles
  • Applied and Environmental Microbiology, Vol. 64, Issue 4
  • DOI: 10.1128/AEM.64.4.1466-1471.1998

Crystal structure of a dodecameric FMN-dependent UbiX-like decarboxylase (Pad1) from Escherichia coli O157: H7
journal, November 2004

  • Rangarajan, Erumbi S.; Li, Yunge; Iannuzzi, Pietro
  • Protein Science, Vol. 13, Issue 11
  • DOI: 10.1110/ps.04953004

Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84
journal, March 2010

  • Landete, José María; Rodríguez, Héctor; Curiel, José Antonio
  • Journal of Industrial Microbiology & Biotechnology, Vol. 37, Issue 6
  • DOI: 10.1007/s10295-010-0709-6

Characterization of the p -Coumaric Acid Decarboxylase from Lactobacillus plantarum CECT 748 T
journal, May 2008

  • Rodríguez, Héctor; Landete, José María; Curiel, José Antonio
  • Journal of Agricultural and Food Chemistry, Vol. 56, Issue 9
  • DOI: 10.1021/jf703779s

Enhancing Volatile Phenol Concentrations in Wine by Expressing Various Phenolic Acid Decarboxylase Genes in Saccharomyces cerevisiae
journal, August 2003

  • Smit, Annél; Cordero Otero, Ricardo R.; Lambrechts, Marius G.
  • Journal of Agricultural and Food Chemistry, Vol. 51, Issue 17
  • DOI: 10.1021/jf026224d

Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide
journal, January 2000


Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme
journal, October 2010

  • Matte, Allan; Grosse, Stephan; Bergeron, Hélène
  • Acta Crystallographica Section F Structural Biology and Crystallization Communications, Vol. 66, Issue 11
  • DOI: 10.1107/S174430911003246X

Styrene biosynthesis from glucose by engineered E. coli
journal, September 2011


The role of UbiX in Escherichia coli coenzyme Q biosynthesis
journal, November 2007

  • Gulmezian, Melissa; Hyman, Kyle R.; Marbois, Beth N.
  • Archives of Biochemistry and Biophysics, Vol. 467, Issue 2
  • DOI: 10.1016/j.abb.2007.08.009

HKL -3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes
journal, July 2006

  • Minor, Wladek; Cymborowski, Marcin; Otwinowski, Zbyszek
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 8
  • DOI: 10.1107/S0907444906019949

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Molecular engineering of industrial enzymes: recent advances and future prospects
journal, November 2013

  • Yang, Haiquan; Li, Jianghua; Shin, Hyun-dong
  • Applied Microbiology and Biotechnology, Vol. 98, Issue 1
  • DOI: 10.1007/s00253-013-5370-3

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Nature’s assembly line: biosynthesis of simple phenylpropanoids and polyketides
journal, May 2008


PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae
journal, June 2010

  • Mukai, Nobuhiko; Masaki, Kazuo; Fujii, Tsutomu
  • Journal of Bioscience and Bioengineering, Vol. 109, Issue 6, p. 564-569
  • DOI: 10.1016/j.jbiosc.2009.11.011

Pathway and protein engineering approaches to produce novel and commodity small molecules
journal, December 2013


Biochemical studies on cloned Bacillus sp. BP-7 phenolic acid decarboxylase PadA
journal, November 2003

  • Prim, N.; Pastor, F. I. J.; Diaz, P.
  • Applied Microbiology and Biotechnology, Vol. 63, Issue 1
  • DOI: 10.1007/s00253-003-1371-y

Structural Characterization of Amorfrutins Bound to the Peroxisome Proliferator-Activated Receptor γ
journal, February 2013

  • de Groot, Jens C.; Weidner, Christopher; Krausze, Joern
  • Journal of Medicinal Chemistry, Vol. 56, Issue 4
  • DOI: 10.1021/jm3013272

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra.
journal, November 1993


Metabolism of Ferulic Acid by Paecilomyces variotii and Pestalotia palmarum
journal, January 1989

  • Rahouti, Mohammed; Seigle-Murandi, Françoise; Steiman, Régine
  • Applied and Environmental Microbiology, Vol. 55, Issue 9
  • DOI: 10.1128/aem.55.9.2391-2398.1989

Cloning, sequencing, and expression in Escherichia coli of the Bacillus pumilus gene for ferulic acid decarboxylase.
journal, January 1995


Purification and characterization of ferulate and p-coumarate decarboxylase from Bacillus pumilus.
journal, January 1995

  • Degrassi, G.; Polverino De Laureto, P.; Bruschi, C. V.
  • Applied and environmental microbiology, Vol. 61, Issue 1
  • DOI: 10.1128/aem.61.1.326-332.1995

Works referencing / citing this record:

Chemical genomic guided engineering of gamma-valerolactone tolerant yeast
journal, January 2018


Enzymes involved in the anaerobic degradation of ortho -phthalate by the nitrate-reducing bacterium Azoarcus sp. strain PA01 : Anaerobic
journal, August 2016

  • Junghare, Madan; Spiteller, Dieter; Schink, Bernhard
  • Environmental Microbiology, Vol. 18, Issue 9
  • DOI: 10.1111/1462-2920.13447

The Impact of Simple Phenolic Compounds on Beer Aroma and Flavor
journal, March 2018


Biologically generated carbon dioxide: nature's versatile chemical strategies for carboxy lyases
journal, January 2020


Selection of Pof-Saccharomyces eubayanus Variants for the Construction of S. cerevisiae × S. eubayanus Hybrids With Reduced 4-Vinyl Guaiacol Formation
journal, July 2018

  • Diderich, Jasper A.; Weening, Susan M.; van den Broek, Marcel
  • Frontiers in Microbiology, Vol. 9
  • DOI: 10.3389/fmicb.2018.01640

Changes in the content of free phenolic acids and antioxidative capacity of wholemeal bread in relation to cereal species and fermentation type
journal, July 2019

  • Skrajda-Brdak, Marta; Konopka, Iwona; Tańska, Małgorzata
  • European Food Research and Technology, Vol. 245, Issue 10
  • DOI: 10.1007/s00217-019-03331-y

Exploring the substrate scope of ferulic acid decarboxylase (FDC1) from Saccharomyces cerevisiae
journal, January 2019

  • Nagy, Emma Zsófia Aletta; Nagy, Csaba Levente; Filip, Alina
  • Scientific Reports, Vol. 9, Issue 1
  • DOI: 10.1038/s41598-018-36977-x

Effect of Bacterial and Yeast Starters on the Formation of Volatile and Organic Acid Compounds in Coffee Beans and Selection of Flavors Markers Precursors During Wet Fermentation
journal, June 2019

  • Martinez, Silvia Juliana; Bressani, Ana Paula Pereira; Dias, Disney Ribeiro
  • Frontiers in Microbiology, Vol. 10
  • DOI: 10.3389/fmicb.2019.01287