skip to main content


Title: Self-calibration of photometric redshift scatter in weak-lensing surveys

Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as the planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may biasmore » the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.« less
 [1] ;  [2] ;  [3]
  1. Shanghai Astronomical Observatory, Shanghai (China)
  2. Univ. of Toronto, Toronto, ON (Canada)
  3. Univ. of Pennsylvania, Philadelphia, PA (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Name: Monthly Notices of the Royal Astronomical Society; Journal ID: ISSN 0035-8711
Royal Astronomical Society
Research Org:
Univ. of Pennsylvania, Philadelphia, PA (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
79 ASTRONOMY AND ASTROPHYSICS; precision weak lensing cosmology; large-scale structure of universe; gravitational lensing; theory; observations
OSTI Identifier: