DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products

Abstract

Recent developments in high-resolution time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made it possible to directly detect atmospheric organic compounds in real time with high sensitivity and with little or no fragmentation, including low-volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, using ions identified by high-resolution spectra from an HR-ToF-CIMS with acetate reagent ion chemistry, we develop an algorithm to estimate the vapor pressures of measured organic acids. The algorithm uses identified ion formulas and calculated double bond equivalencies, information unavailable in quadrupole CIMS technology, as constraints for the number of possible oxygen-containing functional groups. The algorithm is tested with acetate chemical ionization mass spectrometry (acetate-CIMS) spectra of O3 and OH oxidation products of α-pinene and naphthalene formed in a flow reactor with integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec s cm−3, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increasemore » with increased oxidation. The predicted condensed-phase secondary organic aerosol (SOA) average acid yields and O/C and H/C ratios agree within uncertainties with previous chamber and flow reactor measurements and ambient CIMS results. Furthermore, while acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

Authors:
; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Boston College, Chestnut Hill, MA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1197858
Alternate Identifier(s):
OSTI ID: 1455196
Grant/Contract Number:  
SC0004577; SC0006980; FG02-05ER63995
Resource Type:
Published Article
Journal Name:
Atmospheric Measurement Techniques (Online)
Additional Journal Information:
Journal Name: Atmospheric Measurement Techniques (Online) Journal Volume: 8 Journal Issue: 1; Journal ID: ISSN 1867-8548
Publisher:
Copernicus Publications, EGU
Country of Publication:
Germany
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Chhabra, P. S., Lambe, A. T., Canagaratna, M. R., Stark, H., Jayne, J. T., Onasch, T. B., Davidovits, P., Kimmel, J. R., and Worsnop, D. R. Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products. Germany: N. p., 2015. Web. doi:10.5194/amt-8-1-2015.
Chhabra, P. S., Lambe, A. T., Canagaratna, M. R., Stark, H., Jayne, J. T., Onasch, T. B., Davidovits, P., Kimmel, J. R., & Worsnop, D. R. Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products. Germany. https://doi.org/10.5194/amt-8-1-2015
Chhabra, P. S., Lambe, A. T., Canagaratna, M. R., Stark, H., Jayne, J. T., Onasch, T. B., Davidovits, P., Kimmel, J. R., and Worsnop, D. R. Mon . "Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products". Germany. https://doi.org/10.5194/amt-8-1-2015.
@article{osti_1197858,
title = {Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products},
author = {Chhabra, P. S. and Lambe, A. T. and Canagaratna, M. R. and Stark, H. and Jayne, J. T. and Onasch, T. B. and Davidovits, P. and Kimmel, J. R. and Worsnop, D. R.},
abstractNote = {Recent developments in high-resolution time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made it possible to directly detect atmospheric organic compounds in real time with high sensitivity and with little or no fragmentation, including low-volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, using ions identified by high-resolution spectra from an HR-ToF-CIMS with acetate reagent ion chemistry, we develop an algorithm to estimate the vapor pressures of measured organic acids. The algorithm uses identified ion formulas and calculated double bond equivalencies, information unavailable in quadrupole CIMS technology, as constraints for the number of possible oxygen-containing functional groups. The algorithm is tested with acetate chemical ionization mass spectrometry (acetate-CIMS) spectra of O3 and OH oxidation products of α-pinene and naphthalene formed in a flow reactor with integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec s cm−3, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. The predicted condensed-phase secondary organic aerosol (SOA) average acid yields and O/C and H/C ratios agree within uncertainties with previous chamber and flow reactor measurements and ambient CIMS results. Furthermore, while acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.},
doi = {10.5194/amt-8-1-2015},
journal = {Atmospheric Measurement Techniques (Online)},
number = 1,
volume = 8,
place = {Germany},
year = {2015},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/amt-8-1-2015

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds
journal, January 2008


Modeling the Multiday Evolution and Aging of Secondary Organic Aerosol During MILAGRO 2006
journal, April 2011

  • Dzepina, Katja; Cappa, Christopher D.; Volkamer, Rainer M.
  • Environmental Science & Technology, Vol. 45, Issue 8
  • DOI: 10.1021/es103186f

Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of α-pinene degradation and secondary organic aerosol formation
journal, May 2005


Known and Unexplored Organic Constituents in the Earth's Atmosphere
journal, March 2007

  • Goldstein, Allen H.; Galbally, Ian E.
  • Environmental Science & Technology, Vol. 41, Issue 5
  • DOI: 10.1021/es072476p

Estimation of the vapour pressure of non-electrolyte organic compounds via group contributions and group interactions
journal, September 2008


A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics
journal, January 2011

  • Donahue, N. M.; Epstein, S. A.; Pandis, S. N.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 7
  • DOI: 10.5194/acp-11-3303-2011

Measurements of gas-phase inorganic and organic acids from biomass fires by negative-ion proton-transfer chemical-ionization mass spectrometry
journal, January 2010

  • Veres, Patrick; Roberts, James M.; Burling, Ian R.
  • Journal of Geophysical Research, Vol. 115, Issue D23
  • DOI: 10.1029/2010JD014033

Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies
journal, January 2011

  • Ervens, B.; Turpin, B. J.; Weber, R. J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 21
  • DOI: 10.5194/acp-11-11069-2011

Elemental composition and oxidation of chamber organic aerosol
journal, January 2011

  • Chhabra, P. S.; Ng, N. L.; Canagaratna, M. R.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 17
  • DOI: 10.5194/acp-11-8827-2011

Elemental Analysis of Organic Species with Electron Ionization High-Resolution Mass Spectrometry
journal, November 2007

  • Aiken, Allison C.; DeCarlo, Peter F.; Jimenez, Jose L.
  • Analytical Chemistry, Vol. 79, Issue 21
  • DOI: 10.1021/ac071150w

Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles
journal, July 2000

  • Jayne, John T.; Leard, Danna C.; Zhang, Xuefeng
  • Aerosol Science and Technology, Vol. 33, Issue 1-2
  • DOI: 10.1080/027868200410840

Yields of Glyoxal and Ring-Cleavage Co-Products from the OH Radical-Initiated Reactions of Naphthalene and Selected Alkylnaphthalenes
journal, November 2009

  • Nishino, Noriko; Arey, Janet; Atkinson, Roger
  • Environmental Science & Technology, Vol. 43, Issue 22
  • DOI: 10.1021/es902018v

High molecular weight SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry characterization
journal, January 2012

  • Kundu, S.; Fisseha, R.; Putman, A. L.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 12
  • DOI: 10.5194/acp-12-5523-2012

Semicontinuous measurements of gas–particle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS
journal, January 2014

  • Yatavelli, R. L. N.; Stark, H.; Thompson, S. L.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 3
  • DOI: 10.5194/acp-14-1527-2014

Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013
journal, January 2014

  • Ortega, J.; Turnipseed, A.; Guenther, A. B.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 12
  • DOI: 10.5194/acp-14-6345-2014

Chemical Sinks of Organic Aerosol: Kinetics and Products of the Heterogeneous Oxidation of Erythritol and Levoglucosan
journal, September 2010

  • Kessler, Sean H.; Smith, Jared D.; Che, Dung L.
  • Environmental Science & Technology, Vol. 44, Issue 18
  • DOI: 10.1021/es101465m

Improved Understanding of Atmospheric Organic Aerosols via Innovations in Soft Ionization Aerosol Mass Spectrometry
journal, April 2011

  • Zahardis, James; Geddes, Scott; Petrucci, Giuseppe A.
  • Analytical Chemistry, Vol. 83, Issue 7
  • DOI: 10.1021/ac102737k

Quantitative estimates of the volatility of ambient organic aerosol
journal, January 2010


Particulate Organic Matter Detection Using a Micro-Orifice Volatilization Impactor Coupled to a Chemical Ionization Mass Spectrometer (MOVI-CIMS)
journal, January 2010


A field-deployable, chemical ionization time-of-flight mass spectrometer
journal, January 2011

  • Bertram, T. H.; Kimmel, J. R.; Crisp, T. A.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 7
  • DOI: 10.5194/amt-4-1471-2011

Average chemical properties and potential formation pathways of highly oxidized organic aerosol
journal, January 2013

  • Daumit, Kelly E.; Kessler, Sean H.; Kroll, Jesse H.
  • Faraday Discussions, Vol. 165
  • DOI: 10.1039/c3fd00045a

Estimation of pure component properties
journal, July 2008


A model of aerosol evaporation kinetics in a thermodenuder
journal, January 2010


Aerosol mass spectrometer constraint on the global secondary organic aerosol budget
journal, January 2011

  • Spracklen, D. V.; Jimenez, J. L.; Carslaw, K. S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12109-2011

Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions
journal, January 2009

  • Galloway, M. M.; Chhabra, P. S.; Chan, A. W. H.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 10
  • DOI: 10.5194/acp-9-3331-2009

Chemically-resolved aerosol volatility measurements from two megacity field studies
journal, January 2009

  • Huffman, J. A.; Docherty, K. S.; Aiken, A. C.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 18
  • DOI: 10.5194/acp-9-7161-2009

Ultrahigh-resolution FT-ICR mass spectrometry characterization of α-pinene ozonolysis SOA
journal, January 2012


A simplified description of the evolution of organic aerosol composition in the atmosphere: VAN KREVELEN DIAGRAM OF ORGANIC AEROSOL
journal, April 2010

  • Heald, C. L.; Kroll, J. H.; Jimenez, J. L.
  • Geophysical Research Letters, Vol. 37, Issue 8
  • DOI: 10.1029/2010GL042737

Product studies of the OH- and ozone-initiated oxidation of some monoterpenes
journal, May 2000

  • Orlando, John J.; Nozière, Barbara; Tyndall, Geoffrey S.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D9
  • DOI: 10.1029/2000JD900005

Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols
journal, January 2008

  • Fu, Tzung-May; Jacob, Daniel J.; Wittrock, Folkard
  • Journal of Geophysical Research, Vol. 113, Issue D15
  • DOI: 10.1029/2007JD009505

Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene
journal, January 2008

  • Shilling, J. E.; Chen, Q.; King, S. M.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 7
  • DOI: 10.5194/acp-8-2073-2008

O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry
journal, June 2008

  • Aiken, Allison C.; DeCarlo, Peter F.; Kroll, Jesse H.
  • Environmental Science & Technology, Vol. 42, Issue 12
  • DOI: 10.1021/es703009q

Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol
journal, January 2009

  • Kroll, Jesse H.; Smith, Jared D.; Che, Dung L.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 36
  • DOI: 10.1039/b905289e

Aqueous chemistry and its role in secondary organic aerosol (SOA) formation
journal, January 2010


Introducing the concept of Potential Aerosol Mass (PAM)
journal, January 2007

  • Kang, E.; Root, M. J.; Toohey, D. W.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 22
  • DOI: 10.5194/acp-7-5727-2007

Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes
journal, January 2006

  • Lee, Anita; Goldstein, Allen H.; Keywood, Melita D.
  • Journal of Geophysical Research, Vol. 111, Issue D7
  • DOI: 10.1029/2005JD006437

α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NO x environments
journal, January 2012

  • Eddingsaas, N. C.; Loza, C. L.; Yee, L. D.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 16
  • DOI: 10.5194/acp-12-7413-2012

Changes in organic aerosol composition with aging inferred from aerosol mass spectra
journal, January 2011

  • Ng, N. L.; Canagaratna, M. R.; Jimenez, J. L.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 13
  • DOI: 10.5194/acp-11-6465-2011

High-resolution chemical ionization mass spectrometry (ToF-CIMS): application to study SOA composition and processing
journal, January 2013

  • Aljawhary, D.; Lee, A. K. Y.; Abbatt, J. P. D.
  • Atmospheric Measurement Techniques, Vol. 6, Issue 11
  • DOI: 10.5194/amt-6-3211-2013

Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer
journal, January 2007

  • Canagaratna, M. R.; Jayne, J. T.; Jimenez, J. L.
  • Mass Spectrometry Reviews, Vol. 26, Issue 2
  • DOI: 10.1002/mas.20115

The formation, properties and impact of secondary organic aerosol: current and emerging issues
journal, January 2009

  • Hallquist, M.; Wenger, J. C.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-5155-2009

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol
journal, January 2011

  • Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.
  • Nature Chemistry, Vol. 3, Issue 2
  • DOI: 10.1038/nchem.948

Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air
journal, January 2012


A group contribution method for estimating the vapour pressures of α-pinene oxidation products
journal, January 2006


Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry
journal, March 2010

  • Farmer, D. K.; Matsunaga, A.; Docherty, K. S.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 15
  • DOI: 10.1073/pnas.0912340107

Contribution of Nitrated Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United Kingdom during Winter Time
journal, May 2013

  • Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Zotter, Peter
  • Environmental Science & Technology, Vol. 47, Issue 12
  • DOI: 10.1021/es400683v

Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer
journal, December 2006

  • DeCarlo, Peter F.; Kimmel, Joel R.; Trimborn, Achim
  • Analytical Chemistry, Vol. 78, Issue 24
  • DOI: 10.1021/ac061249n

Transitions from Functionalization to Fragmentation Reactions of Laboratory Secondary Organic Aerosol (SOA) Generated from the OH Oxidation of Alkane Precursors
journal, May 2012

  • Lambe, Andrew T.; Onasch, Timothy B.; Croasdale, David R.
  • Environmental Science & Technology, Vol. 46, Issue 10
  • DOI: 10.1021/es300274t

Modeling organic aerosol from the oxidation of α-pinene in a Potential Aerosol Mass (PAM) chamber
journal, January 2013

  • Chen, S.; Brune, W. H.; Lambe, A. T.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 9
  • DOI: 10.5194/acp-13-5017-2013

A large source of low-volatility secondary organic aerosol
journal, February 2014

  • Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard
  • Nature, Vol. 506, Issue 7489
  • DOI: 10.1038/nature13032

Estimation of pure component properties
journal, December 2004


Mechanism of the photooxidation of gaseous formaldehyde
journal, December 1979

  • Su, Fu.; Calvert, Jack G.; Shaw, John H.
  • The Journal of Physical Chemistry, Vol. 83, Issue 25
  • DOI: 10.1021/j100488a001

Evidence of rapid production of organic acids in an urban air mass: PHOTOCHEMICAL PRODUCTION OF ORGANIC ACID
journal, September 2011

  • Veres, Patrick R.; Roberts, James M.; Cochran, Anthony K.
  • Geophysical Research Letters, Vol. 38, Issue 17
  • DOI: 10.1029/2011GL048420

A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)
journal, January 2014

  • Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 4
  • DOI: 10.5194/amt-7-983-2014

Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances
journal, January 2012

  • Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.
  • Environmental Chemistry, Vol. 9, Issue 3
  • DOI: 10.1071/EN12052

The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol
journal, January 2010


Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes
journal, January 2006

  • Lee, Anita; Goldstein, Allen H.; Kroll, Jesse H.
  • Journal of Geophysical Research, Vol. 111, Issue D17
  • DOI: 10.1029/2006JD007050

Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol
journal, January 2012


Contribution of First- versus Second-Generation Products to Secondary Organic Aerosols Formed in the Oxidation of Biogenic Hydrocarbons
journal, April 2006

  • Ng, Nga L.; Kroll, Jesse H.; Keywood, Melita D.
  • Environmental Science & Technology, Vol. 40, Issue 7
  • DOI: 10.1021/es052269u

Technical Note: Vapor pressure estimation methods applied to secondary organic aerosol constituents from α-pinene oxidation: an intercomparison study
journal, January 2010

  • Compernolle, S.; Ceulemans, K.; Müller, J. -F.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 13
  • DOI: 10.5194/acp-10-6271-2010

Modeling aerosol formation in alpha-pinene photo-oxidation experiments
journal, January 2008

  • Capouet, M.; Müller, J. -F.; Ceulemans, K.
  • Journal of Geophysical Research, Vol. 113, Issue D2
  • DOI: 10.1029/2007JD008995

Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation of α- and β-Pinene
journal, August 2001

  • Bilde, Merete; Pandis, Spyros N.
  • Environmental Science & Technology, Vol. 35, Issue 16
  • DOI: 10.1021/es001946b

Water-Soluble Atmospheric Organic Matter in Fog: Exact Masses and Chemical Formula Identification by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
journal, May 2010

  • Mazzoleni, Lynn R.; Ehrmann, Brandie M.; Shen, Xinhua
  • Environmental Science & Technology, Vol. 44, Issue 10
  • DOI: 10.1021/es903409k

Kinetic and mechanistic study of the hydroxyl + formic acid reaction
journal, June 1985

  • Wine, P. H.; Astalos, R. J.; Mauldin, R. L.
  • The Journal of Physical Chemistry, Vol. 89, Issue 12
  • DOI: 10.1021/j100258a037

Chemical Composition of Gas- and Aerosol-Phase Products from the Photooxidation of Naphthalene
journal, January 2010

  • Kautzman, K. E.; Surratt, J. D.; Chan, M. N.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 2
  • DOI: 10.1021/jp908530s

Airborne measurement of OH reactivity during INTEX-B
journal, January 2009

  • Mao, J.; Ren, X.; Brune, W. H.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 1
  • DOI: 10.5194/acp-9-163-2009

Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere
journal, May 2008


OH-Initiated Heterogeneous Aging of Highly Oxidized Organic Aerosol
journal, February 2012

  • Kessler, Sean H.; Nah, Theodora; Daumit, Kelly E.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 24
  • DOI: 10.1021/jp212131m

Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere
journal, July 2008

  • Veres, Patrick; Roberts, James M.; Warneke, Carsten
  • International Journal of Mass Spectrometry, Vol. 274, Issue 1-3
  • DOI: 10.1016/j.ijms.2008.04.032

Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer: AIRBORNE HCHO AND HCOOH, QCL SYSTEM
journal, February 2007

  • Herndon, Scott C.; Zahniser, Mark S.; Nelson, David D.
  • Journal of Geophysical Research: Atmospheres, Vol. 112, Issue D10
  • DOI: 10.1029/2006JD007600

Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics
journal, April 2006

  • Donahue, N. M.; Robinson, A. L.; Stanier, C. O.
  • Environmental Science & Technology, Vol. 40, Issue 8
  • DOI: 10.1021/es052297c