skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica

Abstract

The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission, atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL), mid-Holocene (6000 yr BP; hereafter referred to as \"6 kyr\"), last glacial inception (115 000 yr BP; hereafter \"115 kyr\") and Eemian (126 000 yr BP; hereafter \"126 kyr\"). One glacial time interval, the Last Glacial Maximum (LGM) (21 000 yr BP; hereafter \"21 kyr\"), was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periodsmore » relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, 2 times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climates.« less

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1182921
Report Number(s):
PNNL-SA-101006
Journal ID: ISSN 1814-9332; KP1703020
Grant/Contract Number:  
INTERDYNAMIK, MISO (SPP1266); AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Climate of the Past
Additional Journal Information:
Journal Volume: 11; Journal Issue: 5; Journal ID: ISSN 1814-9332
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; dust deposition; Antarctica; glacial; interglacial; climate; modelling

Citation Formats

Sudarchikova, Natalia, Mikolajewicz, Uwe, Timmreck, C., O'Donnell, D., Schurgers, G., Sein, Dmitry, and Zhang, Kai. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica. United States: N. p., 2015. Web. doi:10.5194/cp-11-765-2015.
Sudarchikova, Natalia, Mikolajewicz, Uwe, Timmreck, C., O'Donnell, D., Schurgers, G., Sein, Dmitry, & Zhang, Kai. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica. United States. doi:10.5194/cp-11-765-2015.
Sudarchikova, Natalia, Mikolajewicz, Uwe, Timmreck, C., O'Donnell, D., Schurgers, G., Sein, Dmitry, and Zhang, Kai. Tue . "Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica". United States. doi:10.5194/cp-11-765-2015. https://www.osti.gov/servlets/purl/1182921.
@article{osti_1182921,
title = {Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica},
author = {Sudarchikova, Natalia and Mikolajewicz, Uwe and Timmreck, C. and O'Donnell, D. and Schurgers, G. and Sein, Dmitry and Zhang, Kai},
abstractNote = {The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission, atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL), mid-Holocene (6000 yr BP; hereafter referred to as \"6 kyr\"), last glacial inception (115 000 yr BP; hereafter \"115 kyr\") and Eemian (126 000 yr BP; hereafter \"126 kyr\"). One glacial time interval, the Last Glacial Maximum (LGM) (21 000 yr BP; hereafter \"21 kyr\"), was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, 2 times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climates.},
doi = {10.5194/cp-11-765-2015},
journal = {Climate of the Past},
number = 5,
volume = 11,
place = {United States},
year = {2015},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates
journal, July 2011

  • Albani, Samuel; Mahowald, Natalie M.; Delmonte, Barbara
  • Climate Dynamics, Vol. 38, Issue 9-10
  • DOI: 10.1007/s00382-011-1139-5

Atmospheric dust under glacial and interglacial conditions
journal, July 1998

  • Andersen, Katrine K.; Armengaud, Alexandre; Genthon, Christophe
  • Geophysical Research Letters, Vol. 25, Issue 13
  • DOI: 10.1029/98GL51811

Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data
journal, January 2007

  • Balkanski, Y.; Schulz, M.; Claquin, T.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 1
  • DOI: 10.5194/acp-7-81-2007

Aeolian dust modeling over the past four glacial cycles with CLIMBER-2
journal, November 2010


Multiple sources supply eolian mineral dust to the Atlantic sector of coastal Antarctica: Evidence from recent snow layers at the top of Berkner Island ice sheet
journal, March 2010

  • Bory, Aloys; Wolff, Eric; Mulvaney, Robert
  • Earth and Planetary Science Letters, Vol. 291, Issue 1-4
  • DOI: 10.1016/j.epsl.2010.01.006

Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features
journal, January 2007

  • Braconnot, P.; Otto-Bliesner, B.; Harrison, S.
  • Climate of the Past, Vol. 3, Issue 2
  • DOI: 10.5194/cp-3-261-2007

Seasonal variability in the input of lead, barium and indium to Law Dome, Antarctica
journal, January 2011

  • Burn-Nunes, Laurie J.; Vallelonga, Paul; Loss, Robert D.
  • Geochimica et Cosmochimica Acta, Vol. 75, Issue 1
  • DOI: 10.1016/j.gca.2010.09.037

Primary aerosol (sea salt and soil dust) deposited in Greenland ice during the last climatic cycle: Comparison with east Antarctic records
journal, November 1997

  • De Angelis, M.; Steffensen, J. P.; Legrand, M.
  • Journal of Geophysical Research: Oceans, Vol. 102, Issue C12
  • DOI: 10.1029/97JC01298

Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core
journal, April 2002


African dust aerosols as atmospheric ice nuclei: AFRICAN DUST AEROSOLS AS ICE NUCLEI
journal, July 2003

  • DeMott, Paul J.; Sassen, Kenneth; Poellot, Michael R.
  • Geophysical Research Letters, Vol. 30, Issue 14
  • DOI: 10.1029/2003GL017410

Role of mineral aerosol as a reactive surface in the global troposphere
journal, October 1996

  • Dentener, Frank J.; Carmichael, Gregory R.; Zhang, Yang
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D17
  • DOI: 10.1029/96JD01818

Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas
journal, January 1999


Sources and distributions of dust aerosols simulated with the GOCART model
journal, September 2001

  • Ginoux, Paul; Chin, Mian; Tegen, Ina
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D17
  • DOI: 10.1029/2000JD000053

Global dust model intercomparison in AeroCom phase I
journal, January 2011

  • Huneeus, N.; Schulz, M.; Balkanski, Y.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 15
  • DOI: 10.5194/acp-11-7781-2011

Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate
journal, April 2005


On the effect of dust particles on global cloud condensation nuclei and cloud droplet number: DUST IMPACTS ON CLOUD CONDENSATION NUCLEI
journal, December 2011

  • Karydis, V. A.; Kumar, P.; Barahona, D.
  • Journal of Geophysical Research: Atmospheres, Vol. 116, Issue D23
  • DOI: 10.1029/2011JD016283

DIRTMAP: the geological record of dust
journal, June 2001


Altitude of atmospheric tracer transport towards Antarctica inpresent and glacial climate
journal, January 2010


Dust ice nuclei effects on cirrus clouds
journal, January 2014

  • Kuebbeler, M.; Lohmann, U.; Hendricks, J.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 6
  • DOI: 10.5194/acp-14-3027-2014

Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica
journal, January 2012

  • Lambert, F.; Bigler, M.; Steffensen, J. P.
  • Climate of the Past, Vol. 8, Issue 2
  • DOI: 10.5194/cp-8-609-2012

Glaciochemistry of polar ice cores: A review
journal, August 1997

  • Legrand, Michel; Mayewski, Paul
  • Reviews of Geophysics, Vol. 35, Issue 3
  • DOI: 10.1029/96RG03527

Toward understanding the dust deposition in Antarctica during the Last Glacial Maximum: Sensitivity studies on plausible causes: DUST DEPOSITION IN ANTARCTICA DURING LGM
journal, December 2010

  • Li, Fuyu; Ramaswamy, V.; Ginoux, Paul
  • Journal of Geophysical Research: Atmospheres, Vol. 115, Issue D24
  • DOI: 10.1029/2010JD014791

Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5
journal, January 2012


Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments
journal, July 1999

  • Mahowald, Natalie; Kohfeld, Karen; Hansson, Margaret
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D13
  • DOI: 10.1029/1999JD900084

Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts: GLOBAL ATMOSPHERIC PHOSPHORUS
journal, December 2008

  • Mahowald, Natalie; Jickells, Timothy D.; Baker, Alex R.
  • Global Biogeochemical Cycles, Vol. 22, Issue 4
  • DOI: 10.1029/2008GB003240

Atmospheric global dust cycle and iron inputs to the ocean: ATMOSPHERIC IRON DEPOSITION
journal, December 2005

  • Mahowald, Natalie M.; Baker, Alex R.; Bergametti, Gilles
  • Global Biogeochemical Cycles, Vol. 19, Issue 4
  • DOI: 10.1029/2004GB002402

Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates: DUST RESPONSE TO CLIMATE
journal, May 2006

  • Mahowald, Natalie M.; Muhs, Daniel R.; Levis, Samuel
  • Journal of Geophysical Research: Atmospheres, Vol. 111, Issue D10
  • DOI: 10.1029/2005JD006653

Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme
journal, January 1995

  • Marticorena, B.; Bergametti, G.
  • Journal of Geophysical Research, Vol. 100, Issue D8
  • DOI: 10.1029/95JD00690

Iron in Antarctic waters
journal, May 1990

  • Martin, John H.; Gordon, R. Michael; Fitzwater, Steve E.
  • Nature, Vol. 345, Issue 6271
  • DOI: 10.1038/345156a0

20th-Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America
journal, March 2007

  • McConnell, J. R.; Aristarain, A. J.; Banta, J. R.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 14
  • DOI: 10.1073/pnas.0607657104

Effect of ice sheet interactions in anthropogenic climate change simulations
journal, January 2007

  • Mikolajewicz, Uwe; Vizcaíno, Miren; Jungclaus, Johann
  • Geophysical Research Letters, Vol. 34, Issue 18
  • DOI: 10.1029/2007GL031173

Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems
journal, April 2004

  • Okin, Gregory S.; Mahowald, Natalie; Chadwick, Oliver A.
  • Global Biogeochemical Cycles, Vol. 18, Issue 2
  • DOI: 10.1029/2003GB002145

GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE
journal, May 2004


Palaeoclimatological and chronological implications of the Vostok core dust record
journal, January 1990

  • Petit, J. R.; Mourner, L.; Jouzel, J.
  • Nature, Vol. 343, Issue 6253
  • DOI: 10.1038/343056a0

Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica
journal, June 1999

  • Petit, J. R.; Jouzel, J.; Raynaud, D.
  • Nature, Vol. 399, Issue 6735
  • DOI: 10.1038/20859

Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model
journal, August 2006

  • Roeckner, E.; Brokopf, R.; Esch, M.
  • Journal of Climate, Vol. 19, Issue 16
  • DOI: 10.1175/JCLI3824.1

High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core
journal, January 2013

  • Schüpbach, S.; Federer, U.; Kaufmann, P. R.
  • Climate of the Past, Vol. 9, Issue 6
  • DOI: 10.5194/cp-9-2789-2013

Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust
journal, August 2001

  • Sokolik, I. N.; Winker, D. M.; Bergametti, G.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D16
  • DOI: 10.1029/2000JD900498

The aerosol-climate model ECHAM5-HAM
journal, January 2005

  • Stier, P.; Feichter, J.; Kinne, S.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 4
  • DOI: 10.5194/acp-5-1125-2005

Modeling the mineral dust aerosol cycle in the climate system
journal, September 2003


Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study: GLOBAL DUST AEROSOL MODEL
journal, November 2002

  • Tegen, Ina; Harrison, Sandy P.; Kohfeld, Karen
  • Journal of Geophysical Research: Atmospheres, Vol. 107, Issue D21
  • DOI: 10.1029/2001JD000963

Analysis and quantification of the diversities of aerosol life cycles within AeroCom
journal, January 2006

  • Textor, C.; Schulz, M.; Guibert, S.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 7
  • DOI: 10.5194/acp-6-1777-2006

Saharan dust particles nucleate droplets in eastern Atlantic clouds
journal, January 2009

  • Twohy, Cynthia H.; Kreidenweis, Sonia M.; Eidhammer, Trude
  • Geophysical Research Letters, Vol. 36, Issue 1
  • DOI: 10.1029/2008GL035846

Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds
journal, January 2007

  • Verheggen, Bart; Cozic, Julie; Weingartner, Ernest
  • Journal of Geophysical Research, Vol. 112, Issue D23
  • DOI: 10.1029/2007JD008714

Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions
journal, January 2002


Relationship between chemistry of air, fresh snow and firn cores for aerosol species in coastal Antarctica
journal, May 1998

  • Wolff, E. W.; Hall, J. S.; Mulvaney, R.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D9
  • DOI: 10.1029/97JD02613

Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles
journal, March 2006


    Works referencing / citing this record:

    A Possible Role of Dust in Resolving the Holocene Temperature Conundrum
    journal, March 2018


    Rock varnish on petroglyphs from the Hima region, southwestern Saudi Arabia: Chemical composition, growth rates, and tentative ages
    journal, May 2019

    • Macholdt, Dorothea S.; Jochum, Klaus Peter; Al-Amri, Abdullah
    • The Holocene, Vol. 29, Issue 8
    • DOI: 10.1177/0959683619846979