DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural insights into translational recoding by frameshift suppressor tRNASufJ

Abstract

The three-nucleotide mRNA reading frame is tightly regulated during translation to ensure accurate protein expression. Translation errors that lead to aberrant protein production can result from the uncoupled movement of the tRNA in either the 5' or 3' direction on mRNA. Here, we report the biochemical and structural characterization of +1 frameshift suppressor tRNASufJ, a tRNA known to decode four, instead of three, nucleotides. Frameshift suppressor tRNASufJ contains an insertion 5' to its anticodon, expanding the anticodon loop from seven to eight nucleotides. Our results indicate that the expansion of the anticodon loop of either ASLSufJ or tRNASufJ does not affect its affinity for the A site of the ribosome. Structural analyses of both ASLSufJ and ASLThr bound to the Thermus thermophilus 70S ribosome demonstrate both ASLs decode in the zero frame. Although the anticodon loop residues 34–37 are superimposable with canonical seven-nucleotide ASLs, the single C31.5 insertion between nucleotides 31 and 32 in ASLSufJ imposes a conformational change of the anticodon stem, that repositions and tilts the ASL toward the back of the A site. Further modeling analyses reveal that this tilting would cause a distortion in full-length A-site tRNASufJ during tRNA selection and possibly impede gripping of themore » anticodon stem by 16S rRNA nucleotides in the P site. Together, these data implicate tRNA distortion as a major driver of noncanonical translation events such as frameshifting.« less

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. Emory Univ., Atlanta, GA (United States). School of Medicine. Dept. of Biochemistry
Publication Date:
Research Org.:
Emory Univ., Atlanta, GA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); USDOD; National Inst. of Health (NIH) (United States)
OSTI Identifier:
1182320
Grant/Contract Number:  
AC02-06CH11357; T32 GM8367; R01GM093278; RR-15301
Resource Type:
Accepted Manuscript
Journal Name:
RNA
Additional Journal Information:
Journal Volume: 20; Journal Issue: 12; Journal ID: ISSN 1355-8382
Publisher:
Cambridge University Press
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES; ribosome; mRNA; reading frame; anticodon stem–loop; decoding; X-ray crystal structure

Citation Formats

Fagan, Crystal E., Maehigashi, Tatsuya, Dunkle, Jack A., Miles, Stacey J., and Dunham, Christine M. Structural insights into translational recoding by frameshift suppressor tRNASufJ. United States: N. p., 2014. Web. doi:10.1261/rna.046953.114.
Fagan, Crystal E., Maehigashi, Tatsuya, Dunkle, Jack A., Miles, Stacey J., & Dunham, Christine M. Structural insights into translational recoding by frameshift suppressor tRNASufJ. United States. https://doi.org/10.1261/rna.046953.114
Fagan, Crystal E., Maehigashi, Tatsuya, Dunkle, Jack A., Miles, Stacey J., and Dunham, Christine M. Tue . "Structural insights into translational recoding by frameshift suppressor tRNASufJ". United States. https://doi.org/10.1261/rna.046953.114. https://www.osti.gov/servlets/purl/1182320.
@article{osti_1182320,
title = {Structural insights into translational recoding by frameshift suppressor tRNASufJ},
author = {Fagan, Crystal E. and Maehigashi, Tatsuya and Dunkle, Jack A. and Miles, Stacey J. and Dunham, Christine M.},
abstractNote = {The three-nucleotide mRNA reading frame is tightly regulated during translation to ensure accurate protein expression. Translation errors that lead to aberrant protein production can result from the uncoupled movement of the tRNA in either the 5' or 3' direction on mRNA. Here, we report the biochemical and structural characterization of +1 frameshift suppressor tRNASufJ, a tRNA known to decode four, instead of three, nucleotides. Frameshift suppressor tRNASufJ contains an insertion 5' to its anticodon, expanding the anticodon loop from seven to eight nucleotides. Our results indicate that the expansion of the anticodon loop of either ASLSufJ or tRNASufJ does not affect its affinity for the A site of the ribosome. Structural analyses of both ASLSufJ and ASLThr bound to the Thermus thermophilus 70S ribosome demonstrate both ASLs decode in the zero frame. Although the anticodon loop residues 34–37 are superimposable with canonical seven-nucleotide ASLs, the single C31.5 insertion between nucleotides 31 and 32 in ASLSufJ imposes a conformational change of the anticodon stem, that repositions and tilts the ASL toward the back of the A site. Further modeling analyses reveal that this tilting would cause a distortion in full-length A-site tRNASufJ during tRNA selection and possibly impede gripping of the anticodon stem by 16S rRNA nucleotides in the P site. Together, these data implicate tRNA distortion as a major driver of noncanonical translation events such as frameshifting.},
doi = {10.1261/rna.046953.114},
journal = {RNA},
number = 12,
volume = 20,
place = {United States},
year = {Tue Oct 28 00:00:00 EDT 2014},
month = {Tue Oct 28 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Figures / Tables:

FIGURE 1 FIGURE 1: Possible models for +1 frameshifting resulting from an eight-nucleotide anticodon stem–loop. (A) The quadruplet decoding model posits that insertions in the anticodon stem–loop of a frameshift suppressor tRNA leads to a four-nucleotide anticodon capable of decoding and translocating a four-nucleotidemRNA codon (with the extra nucleotide shown in green).more » The numbering of the mRNA begins with the first position in the P site. (B) An alternative model is that the nucleotide insertion in the anticodon stem–loop causes a widening of the loop, allowing the anticodon nucleotide 34 to interact with the fourth nucleotide of the A-site codon (green; numbered as 7 inA). (C) In the P-site slippage model, normal decoding in the zero frame occurs in the A site; however, the transition into the +1 frame occurs after translocation to the P site due to a weakened interaction between the anticodon and codon.« less

Save / Share:

Works referenced in this record:

Exploring the Limits of Codon and Anticodon Size
journal, February 2002

  • Anderson, J. Christopher; Magliery, Thomas J.; Schultz, Peter G.
  • Chemistry & Biology, Vol. 9, Issue 2, p. 237-244
  • DOI: 10.1016/S1074-5521(02)00094-7

A Gripping Tale of Ribosomal Frameshifting: Extragenic Suppressors of Frameshift Mutations Spotlight P-Site Realignment
journal, March 2009

  • Atkins, J. F.; Bjork, G. R.
  • Microbiology and Molecular Biology Reviews, Vol. 73, Issue 1
  • DOI: 10.1128/MMBR.00010-08

Four-base codons ACCA, ACCU and ACCC are recognized by frameshift suppressor sufJ
journal, August 1981


Suppressor sufJ: a novel type of tRNA mutant that induces translational frameshifting.
journal, October 1984

  • Bossi, L.; Smith, D. M.
  • Proceedings of the National Academy of Sciences, Vol. 81, Issue 19
  • DOI: 10.1073/pnas.81.19.6105

Codon-specific missense errors in vivo.
journal, August 1983


Structure of the ribosome with elongation factor G trapped in the pretranslocation state
journal, December 2013

  • Brilot, A. F.; Korostelev, A. A.; Ermolenko, D. N.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 52
  • DOI: 10.1073/pnas.1311423110

Expanded use of sense codons is regulated by modified cytidines in tRNA
journal, June 2013

  • Cantara, W. A.; Murphy, F. V.; Demirci, H.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 27
  • DOI: 10.1073/pnas.1222641110

Nucleotide sequence of the SUF2 frameshift suppressor gene of Saccharomyces cerevisiae.
journal, June 1982

  • Cummins, C. M.; Donahue, T. F.; Culbertson, M. R.
  • Proceedings of the National Academy of Sciences, Vol. 79, Issue 11
  • DOI: 10.1073/pnas.79.11.3565

Reading frame selection and transfer RNA anticodon loop stacking
journal, December 1987


New structural insights into the decoding mechanism: Translation infidelity via a G·U pair with Watson-Crick geometry
journal, May 2013


Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit
journal, April 2007


Mistranslation in E. coli
journal, January 1977


Translational frameshifting: Implications for the mechanism of translational frame maintenance
journal, January 2000


Incorporation of Nonnatural Amino Acids into Proteins by Using Various Four-Base Codons in an Escherichia coli in Vitro Translation System
journal, August 2001

  • Hohsaka, Takahiro; Ashizuka, Yuki; Taira, Hikaru
  • Biochemistry, Vol. 40, Issue 37
  • DOI: 10.1021/bi0108204

Crystallization of the Fab from a human monoclonal antibody against gp 41 of human immunodeficiency virus type I
journal, December 1990


Different conformations of tRNA in the ribosomal P-site and A-site
journal, November 1985


Functional interactions by transfer RNAs in the ribosome
journal, November 2009


Construction of Escherichia coli amber suppressor tRNA genes: II. Synthesis of additional tRNA genes and improvement of suppressor efficiency
journal, June 1990

  • Kleina, Lynn G.; Masson, Jean-Michel; Normanly, Jennifer
  • Journal of Molecular Biology, Vol. 213, Issue 4, p. 705-717
  • DOI: 10.1016/S0022-2836(05)80257-8

The frequency of translational misreading errors in E. coli is largely determined by tRNA competition
journal, November 2006


Translational Accuracy and the Fitness of Bacteria
journal, December 1992


Involvement of 16S rRNA Nucleotides G1338 and A1339 in Discrimination of Initiator tRNA
journal, November 2005


Different aa-tRNAs Are Selected Uniformly on the Ribosome
journal, July 2008


A sequence element that tunes Escherichia coli tRNAAlaGGC to ensure accurate decoding
journal, March 2009

  • Ledoux, Sarah; Olejniczak, Mikołaj; Uhlenbeck, Olke C.
  • Nature Structural & Molecular Biology, Vol. 16, Issue 4
  • DOI: 10.1038/nsmb.1581

Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration
journal, August 2006

  • Lee, Jeong Woong; Beebe, Kirk; Nangle, Leslie A.
  • Nature, Vol. 443, Issue 7107
  • DOI: 10.1038/nature05096

Structural insights into +1 frameshifting promoted by expanded or modification-deficient anticodon stem loops
journal, August 2014

  • Maehigashi, T.; Dunkle, J. A.; Miles, S. J.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 35
  • DOI: 10.1073/pnas.1409436111

Suppression of amber mutants in vitro induced by low temperature
journal, November 1978


The importance of tRNA backbone-mediated interactions with synthetase for aminoacylation
journal, January 1998

  • McClain, William H.; Schneider, Jay; Bhattacharya, Subhra
  • Proceedings of the National Academy of Sciences, Vol. 95, Issue 2
  • DOI: 10.1073/pnas.95.2.460

Quadruplet codons: implications for code expansion and the specification of translation step size
journal, April 2000

  • Moore, Barry; Persson, Britt C.; Nelson, Chad C.
  • Journal of Molecular Biology, Vol. 298, Issue 2
  • DOI: 10.1006/jmbi.2000.3658

The role of modifications in codon discrimination by tRNALysUUU
journal, November 2004

  • Murphy, Frank V.; Ramakrishnan, Venki; Malkiewicz, Andrzej
  • Nature Structural & Molecular Biology, Vol. 11, Issue 12
  • DOI: 10.1038/nsmb861

Genetic Code Ambiguity
journal, November 2002

  • Nangle, Leslie A.; de Crécy Lagard, Valérie; Döring, Volker
  • Journal of Biological Chemistry, Vol. 277, Issue 48
  • DOI: 10.1074/jbc.M208093200

The Ribosomal Grip of the Peptidyl-tRNA is Critical for Reading Frame Maintenance
journal, January 2009

  • Näsvall, S. Joakim; Nilsson, Kristina; Björk, Glenn R.
  • Journal of Molecular Biology, Vol. 385, Issue 2
  • DOI: 10.1016/j.jmb.2008.10.069

Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit
journal, May 2001


Idiosyncratic tuning of tRNAs to achieve uniform ribosome binding
journal, August 2005

  • Olejniczak, Mikołaj; Dale, Taraka; Fahlman, Richard P.
  • Nature Structural & Molecular Biology, Vol. 12, Issue 9
  • DOI: 10.1038/nsmb978

Translocation of a tRNA with an Extended Anticodon Through the Ribosome
journal, July 2006

  • Phelps, Steven S.; Gaudin, Cyril; Yoshizawa, Satoko
  • Journal of Molecular Biology, Vol. 360, Issue 3
  • DOI: 10.1016/j.jmb.2006.05.016

A functional pseudoknot in 16S ribosomal RNA.
journal, August 1991


Nucleotide insertion in the anticodon loop of a glycine transfer RNA causes missense suppression.
journal, December 1981

  • Prather, N. E.; Murgola, E. J.; Mims, B. H.
  • Proceedings of the National Academy of Sciences, Vol. 78, Issue 12
  • DOI: 10.1073/pnas.78.12.7408

A New Model for Phenotypic Suppression of Frameshift Mutations by Mutant tRNAs
journal, March 1998


Screen for Human Tumour Viruses
journal, March 1973

  • Skipper, Magdalena; Cesari, Francesca
  • Nature, Vol. 242, Issue 5395, p. 230-230
  • DOI: 10.1038/242230a0

Suppressors of frameshift mutations in Salmonella typhimurium
journal, November 1970


Frameshift suppressors
journal, May 1972


External suppression of a frameshift mutant in Salmonella
journal, June 1968


Frameshift Mutations
journal, December 1974


Structure of the 70S Ribosome Complexed with mRNA and tRNA
journal, September 2006


MUTANTS OF YEAST DEFECTIVE IN ISO-1-CYTOCHROME c
journal, June 1974


tRNA2 Gln mutants that translate the CGA arginine codon as glutamine in Escherichia coli
journal, December 1998


Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome
journal, April 2009

  • Voorhees, Rebecca M.; Weixlbaumer, Albert; Loakes, David
  • Nature Structural & Molecular Biology, Vol. 16, Issue 5
  • DOI: 10.1038/nsmb.1577

Recognition and Positioning of mRNA in the Ribosome by tRNAs with Expanded Anticodons
journal, July 2006


Translational efficiency of transfer RNA's: uses of an extended anticodon
journal, November 1982


The translational efficiency of tRNA is a property of the anticodon arm.
journal, August 1986


Actions of the anticodon arm in translation on the phenotypes of RNA mutants
journal, November 1986


Nature of the compensating frameshift in the double frameshift mutant hisD3018 R5 of Salmonella typhimurium
journal, March 1970


Evidence for Single Copies of Globin Genes in the Mouse Genome
journal, September 1972

  • Harrison, Paul R.; Hell, Anna; Birnie, George D.
  • Nature, Vol. 239, Issue 5369
  • DOI: 10.1038/239219a0

Fidelity at the Molecular Level: Lessons from Protein Synthesis
journal, February 2009


Works referencing / citing this record:

Importance of a tRNA anticodon loop modification and a conserved, noncanonical anticodon stem pairing in tRNA CGG Pro for decoding
journal, February 2019

  • Nguyen, Ha An; Hoffer, Eric D.; Dunham, Christine M.
  • Journal of Biological Chemistry, Vol. 294, Issue 14
  • DOI: 10.1074/jbc.ra119.007410

Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use
journal, July 2016

  • Atkins, John F.; Loughran, Gary; Bhatt, Pramod R.
  • Nucleic Acids Research
  • DOI: 10.1093/nar/gkw530

Bijective codon transformations show genetic code symmetries centered on cytosine’s coding properties
journal, November 2017


High frequency of +1 programmed ribosomal frameshifting in Euplotes octocarinatus
journal, February 2016

  • Wang, Ruanlin; Xiong, Jie; Wang, Wei
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep21139

Systematic Evolution and Study of UAGN Decoding tRNAs in a Genomically Recoded Bacteria
journal, February 2016

  • Wang, Nanxi; Shang, Xin; Cerny, Ronald
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep21898

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.