DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4]

Abstract

This paper reports our synthesis of flexible coordination polymer, Ni(L)[Ni(CN)4], (L = 1,2-bis(4-pyridyl)ethylene (nicknamed bpene)), and its structural characterization using synchrotron single crystal X-ray diffraction. The structure of the purplish crystals has been determined to be monoclinic, space group P21/m, a = 13.5941(12) Å, b = 14.3621(12) Å, c = 14.2561(12) Å, β = 96.141(2)°, V = 2767.4(4) Å3, Z = 4, Dc = 1.46 g cm-1. Ni(bpene)[Ni(CN)4] assumes a pillared layer structure with layers defined by Ni[Ni(CN)4]n nets and bpene ligands acting as pillars. With the present crystallization technique which involves the use of concentrated ammonium hydroxide solution and dimethyl sulfoxide (DMSO), disordered free bpene ligands and solvents of crystallization (DMSO and water molecules) occupy the pores, resulting in a formula of Ni(bpene)[Ni(CN)4](1/2)bpene∙DMSO2H2O, or Ni2N7C24H25SO3. Without the inclusion of free bpene ligands and solvent molecules, the free volume is approximately 61% of the total volume; this free volume fraction is reduced to 50% with the free ligands present. Pores without the free ligands were found to have a local diameter of 5.7 Å and a main aperture of 3.5 Å. Based on the successful crystal synthesis, we also devised a new bulk synthetic technique which yielded a polycrystalline materialmore » with a significantly improved CO2 uptake as compared to the originally reported powder material. The improved synthetic technique yielded a polycrystalline material with 40% higher CO2 uptake compared to the previously reported powder material. An estimated 14.4 molecules of CO2 per unit cell was obtained.« less

Authors:
 [1];  [2];  [3];  [4];  [1];  [1];  [1];  [3];  [5]
  1. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). Material Measurement Lab.
  2. National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States). URS Corp., South Park, PA (United States)
  3. Univ. of Chicago, IL (United States). ChemMatCARS
  4. Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry
  5. National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
Publication Date:
Research Org.:
National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1129495
Report Number(s):
A-CONTR-PUB-011
Journal ID: ISSN 1466-8033; CRECF4
Grant/Contract Number:  
FE0004000
Resource Type:
Accepted Manuscript
Journal Name:
CrystEngComm
Additional Journal Information:
Journal Volume: 15; Journal Issue: 23; Journal ID: ISSN 1466-8033
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; pillar layered solids, flexible metal organic framework, structurally dynamic, flexible porous coordination polymer, CO2 capture, spin crossover, Hofmann compound, Suzuki coupling

Citation Formats

Wong-Ng, W., Culp, J. T., Chen, Y. S., Zavalij, P., Espinal, L., Siderius, D. W., Allen, A. J., Scheins, S., and Matranga, C. Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4]. United States: N. p., 2013. Web. doi:10.1039/c3ce00017f.
Wong-Ng, W., Culp, J. T., Chen, Y. S., Zavalij, P., Espinal, L., Siderius, D. W., Allen, A. J., Scheins, S., & Matranga, C. Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4]. United States. https://doi.org/10.1039/c3ce00017f
Wong-Ng, W., Culp, J. T., Chen, Y. S., Zavalij, P., Espinal, L., Siderius, D. W., Allen, A. J., Scheins, S., and Matranga, C. Tue . "Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4]". United States. https://doi.org/10.1039/c3ce00017f. https://www.osti.gov/servlets/purl/1129495.
@article{osti_1129495,
title = {Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4]},
author = {Wong-Ng, W. and Culp, J. T. and Chen, Y. S. and Zavalij, P. and Espinal, L. and Siderius, D. W. and Allen, A. J. and Scheins, S. and Matranga, C.},
abstractNote = {This paper reports our synthesis of flexible coordination polymer, Ni(L)[Ni(CN)4], (L = 1,2-bis(4-pyridyl)ethylene (nicknamed bpene)), and its structural characterization using synchrotron single crystal X-ray diffraction. The structure of the purplish crystals has been determined to be monoclinic, space group P21/m, a = 13.5941(12) Å, b = 14.3621(12) Å, c = 14.2561(12) Å, β = 96.141(2)°, V = 2767.4(4) Å3, Z = 4, Dc = 1.46 g cm-1. Ni(bpene)[Ni(CN)4] assumes a pillared layer structure with layers defined by Ni[Ni(CN)4]n nets and bpene ligands acting as pillars. With the present crystallization technique which involves the use of concentrated ammonium hydroxide solution and dimethyl sulfoxide (DMSO), disordered free bpene ligands and solvents of crystallization (DMSO and water molecules) occupy the pores, resulting in a formula of Ni(bpene)[Ni(CN)4](1/2)bpene∙DMSO2H2O, or Ni2N7C24H25SO3. Without the inclusion of free bpene ligands and solvent molecules, the free volume is approximately 61% of the total volume; this free volume fraction is reduced to 50% with the free ligands present. Pores without the free ligands were found to have a local diameter of 5.7 Å and a main aperture of 3.5 Å. Based on the successful crystal synthesis, we also devised a new bulk synthetic technique which yielded a polycrystalline material with a significantly improved CO2 uptake as compared to the originally reported powder material. The improved synthetic technique yielded a polycrystalline material with 40% higher CO2 uptake compared to the previously reported powder material. An estimated 14.4 molecules of CO2 per unit cell was obtained.},
doi = {10.1039/c3ce00017f},
journal = {CrystEngComm},
number = 23,
volume = 15,
place = {United States},
year = {Tue Jan 01 00:00:00 EST 2013},
month = {Tue Jan 01 00:00:00 EST 2013}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Schematic drawing of the bpene ligand, C16H10N6Ni2

Save / Share:

Works referenced in this record:

Co-adsorption and Separation of CO 2 −CH 4 Mixtures in the Highly Flexible MIL-53(Cr) MOF
journal, November 2009

  • Hamon, Lomig; Llewellyn, Philip L.; Devic, Thomas
  • Journal of the American Chemical Society, Vol. 131, Issue 47
  • DOI: 10.1021/ja907556q

Hysteresis in the Physisorption of CO 2 and N 2 in a Flexible Pillared Layer Nickel Cyanide
journal, September 2008

  • Culp, Jeffrey T.; Smith, Milton R.; Bittner, Edward
  • Journal of the American Chemical Society, Vol. 130, Issue 37
  • DOI: 10.1021/ja802474b

Metal-Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials
journal, October 2010

  • Meek, Scott T.; Greathouse, Jeffery A.; Allendorf, Mark D.
  • Advanced Materials, Vol. 23, Issue 2
  • DOI: 10.1002/adma.201002854

Ligand-concentration-dependent self-organization of Hoffman- and PtS-type frameworks from one-pot crystallization
journal, January 2011

  • Chen, Xin; Zhou, Hu; Chen, Ying-Ying
  • CrystEngComm, Vol. 13, Issue 19
  • DOI: 10.1039/c1ce05699a

Effects of Surface Area, Free Volume, and Heat of Adsorption on Hydrogen Uptake in Metal−Organic Frameworks
journal, April 2006

  • Frost, Houston; Düren, Tina; Snurr, Randall Q.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 19
  • DOI: 10.1021/jp060433+

The crystal structures of ?, ?-diaminoalkanecadmium(II) tetracyanonickelate(II)-Aromatic molecule inclusion compounds. V. Toluidine clathrates of the hosts built of the diamines, 1,4-diaminobutane, 1.5-diaminonentane, and 1,8-diaminooctane
journal, September 1991

  • Nishikiori, Shin-Ichi; Hasegawa, Tai; Iwamoto, Toschitake
  • Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, Vol. 11, Issue 2
  • DOI: 10.1007/BF01153297

Extremely Long Axial Cu−N Bonds in Chiral One-Dimensional Zigzag Cyanide-Bridged Cu II - Ni II and Cu II - Pt II Bimetallic Assemblies
journal, November 2006

  • Akitsu, Takashiro; Einaga, Yasuaki
  • Inorganic Chemistry, Vol. 45, Issue 24
  • DOI: 10.1021/ic060783a

Expanding and Shrinking Porous Modulation Based on Pillared-Layer Coordination Polymers Showing Selective Guest Adsorption
journal, June 2004

  • Maji, Tapas Kumar; Uemura, Kazuhiro; Chang, Ho-Chol
  • Angewandte Chemie International Edition, Vol. 43, Issue 25
  • DOI: 10.1002/anie.200453923

Sequestering Aromatic Molecules with a Spin-Crossover FeII Microporous Coordination Polymer
journal, May 2012

  • Muñoz-Lara, Francisco J.; Gaspar, Ana B.; Muñoz, M. Carmen
  • Chemistry - A European Journal, Vol. 18, Issue 26
  • DOI: 10.1002/chem.201200377

Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii
journal, January 1996

  • Rowland, R. Scott; Taylor, Robin
  • The Journal of Physical Chemistry, Vol. 100, Issue 18
  • DOI: 10.1021/jp953141+

Ni(bipy) 2 Ni(CN) 4 , a new type of one-dimensional square tetracyano complex
journal, July 2000

  • Černák, Juraj; Abboud, Khalil A.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 56, Issue 7
  • DOI: 10.1107/S0108270100004996

Materials for sustainable development
journal, April 2012

  • Green, Martin L.; Espinal, Laura; Traversa, Enrico
  • MRS Bulletin, Vol. 37, Issue 4
  • DOI: 10.1557/mrs.2012.51

Screening Hofmann Compounds as CO 2 Sorbents: Nontraditional Synthetic Route to Over 40 Different Pore-Functionalized and Flexible Pillared Cyanonickelates
journal, March 2013

  • Culp, Jeffrey T.; Madden, Catherine; Kauffman, Kristi
  • Inorganic Chemistry, Vol. 52, Issue 8
  • DOI: 10.1021/ic301893p

van der Waals Volumes and Radii
journal, March 1964

  • Bondi, A.
  • The Journal of Physical Chemistry, Vol. 68, Issue 3, p. 441-451
  • DOI: 10.1021/j100785a001

Simulating Local Adsorption Isotherms in Structurally Complex Porous Materials: A Direct Assessment of the Slit Pore Model
journal, January 2011

  • Palmer, Jeremy C.; Moore, Joshua D.; Brennan, John K.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 3
  • DOI: 10.1021/jz1015668

Chemistry and application of flexible porous coordination polymers
journal, January 2008

  • Bureekaew, Sareeya; Shimomura, Satoru; Kitagawa, Susumu
  • Science and Technology of Advanced Materials, Vol. 9, Issue 1
  • DOI: 10.1088/1468-6996/9/1/014108

Coordination polymers, metal–organic frameworks and the need for terminology guidelines
journal, January 2012

  • Batten, Stuart R.; Champness, Neil R.; Chen, Xiao-Ming
  • CrystEngComm, Vol. 14, Issue 9
  • DOI: 10.1039/c2ce06488j

Pillars, Layers, Pores and Networks from Nickeltripyrrins: A Porphyrin Fragment as a Versatile Building Block for the Construction of Supramolecular Assemblies
journal, January 2007

  • Bröring, Martin; Prikhodovski, Serguei; Brandt, Carsten D.
  • Chemistry - A European Journal, Vol. 13, Issue 2
  • DOI: 10.1002/chem.200601296

Cooperative Spin Crossover Behavior in Cyanide-Bridged Fe(II)−M(II) Bimetallic 3D Hofmann-like Networks (M = Ni, Pd, and Pt)
journal, July 2001

  • Niel, Virginie; Martinez-Agudo, José María; Muñoz, M. Carmen
  • Inorganic Chemistry, Vol. 40, Issue 16
  • DOI: 10.1021/ic010259y

Layer-by-layer evolution and a hysteretic single-crystal to single-crystal transformation cycle of a flexible pillared-layer open framework
journal, January 2012

  • Wang, Xiao-Feng; Wang, Yu; Zhang, Yue-Biao
  • Chem. Commun., Vol. 48, Issue 1
  • DOI: 10.1039/C1CC15891K

Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Dynamic Interplay between Spin-Crossover and Host−Guest Function in a Nanoporous Metal−Organic Framework Material
journal, August 2009

  • Southon, Peter D.; Liu, Lang; Fellows, Elizabeth A.
  • Journal of the American Chemical Society, Vol. 131, Issue 31
  • DOI: 10.1021/ja902187d

Metal–Organic Frameworks for Separations
journal, September 2011

  • Li, Jian-Rong; Sculley, Julian; Zhou, Hong-Cai
  • Chemical Reviews, Vol. 112, Issue 2, p. 869-932
  • DOI: 10.1021/cr200190s

Verbindungen von Kohlenwasserstoffen mit Metallsalzen
journal, January 1897


Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences
journal, January 2009

  • Férey, Gérard; Serre, Christian
  • Chemical Society Reviews, Vol. 38, Issue 5
  • DOI: 10.1039/b804302g

Supercritical Processing as a Route to High Internal Surface Areas and Permanent Microporosity in Metal−Organic Framework Materials
journal, January 2009

  • Nelson, Andrew P.; Farha, Omar K.; Mulfort, Karen L.
  • Journal of the American Chemical Society, Vol. 131, Issue 2, p. 458-460
  • DOI: 10.1021/ja808853q

Carbon Dioxide Capture and Storage
journal, April 2008

  • Benson, Sally M.; Orr, Franklin M.
  • MRS Bulletin, Vol. 33, Issue 4
  • DOI: 10.1557/mrs2008.63

Coordination Polymers Versus Metal−Organic Frameworks
journal, July 2009

  • Biradha, Kumar; Ramanan, Arunachalam; Vittal, Jagadese J.
  • Crystal Growth & Design, Vol. 9, Issue 7
  • DOI: 10.1021/cg801381p

Pore Size Distributions in Porous Glasses:  A Computer Simulation Study
journal, January 1999


Applicability of the BET Method for Determining Surface Areas of Microporous Metal−Organic Frameworks
journal, July 2007

  • Walton, Krista S.; Snurr, Randall Q.
  • Journal of the American Chemical Society, Vol. 129, Issue 27
  • DOI: 10.1021/ja071174k

Design and construction of a microporous metal–organic framework based on the pillared-layer motif
journal, January 2007

  • Gao, Chaoying; Liu, Shuxia; Xie, Linhua
  • CrystEngComm, Vol. 9, Issue 7
  • DOI: 10.1039/B704433J

Past, present and future of the clathrate inclusion compounds built of cyanometallate hosts
journal, January 1996

  • Iwamoto, Toschitake
  • Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, Vol. 24, Issue 1-2
  • DOI: 10.1007/BF01053426

Surprises from a Simple Material—The Structure and Properties of Nickel Cyanide
journal, September 2007

  • Hibble, Simon J.; Chippindale, Ann M.; Pohl, Alexander H.
  • Angewandte Chemie International Edition, Vol. 46, Issue 37
  • DOI: 10.1002/anie.200701246

Synergetic Effect of Host-Guest Chemistry and Spin Crossover in 3D Hofmann-like Metal-Organic Frameworks [Fe(bpac)M(CN)4] (M=Pt, Pd, Ni)
journal, December 2011

  • Bartual-Murgui, Carlos; Salmon, Lionel; Akou, Amal
  • Chemistry - A European Journal, Vol. 18, Issue 2
  • DOI: 10.1002/chem.201102357

Calculating Geometric Surface Areas as a Characterization Tool for Metal−Organic Frameworks
journal, October 2007

  • Düren, Tina; Millange, Franck; Férey, Gérard
  • The Journal of Physical Chemistry C, Vol. 111, Issue 42
  • DOI: 10.1021/jp074723h

Materials for sustainable development
journal, April 2012


Expanding and Shrinking Porous Modulation Based on Pillared-Layer Coordination Polymers Showing Selective Guest Adsorption
journal, June 2004

  • Maji, Tapas Kumar; Uemura, Kazuhiro; Chang, Ho-Chol
  • Angewandte Chemie, Vol. 116, Issue 25
  • DOI: 10.1002/ange.200453923

Surprises from a Simple Material—The Structure and Properties of Nickel Cyanide
journal, September 2007

  • Hibble, Simon J.; Chippindale, Ann M.; Pohl, Alexander H.
  • Angewandte Chemie, Vol. 119, Issue 37
  • DOI: 10.1002/ange.200701246

Works referencing / citing this record:

Powder X-ray structural studies and reference diffraction patterns for three forms of porous aluminum terephthalate, MIL-53(A1)
journal, June 2019


Topology of voids and channels in selected porphyrinic compounds
journal, September 2019


Bis(4-pyridyl)mercury – a new linear tecton in crystal engineering: coordination polymers and co-crystallization processes
journal, January 2015

  • Mocanu, Teodora; Raţ, Ciprian I.; Maxim, Catalin
  • CrystEngComm, Vol. 17, Issue 29
  • DOI: 10.1039/c5ce00388a

Molecular simulation of capillary phase transitions in flexible porous materials
journal, March 2018

  • Shen, Vincent K.; Siderius, Daniel W.; Mahynski, Nathan A.
  • The Journal of Chemical Physics, Vol. 148, Issue 12
  • DOI: 10.1063/1.5022171

Structural Basis of CO2 Adsorption in a Flexible Metal-Organic Framework Material
journal, March 2019

  • Allen, Andrew; Wong-Ng, Winnie; Cockayne, Eric
  • Nanomaterials, Vol. 9, Issue 3
  • DOI: 10.3390/nano9030354

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.