skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulation model finned water-air-coil withoutcondensation

Technical Report ·
DOI:https://doi.org/10.2172/7353· OSTI ID:7353

A simple simulation model of a finned water-to- air coil without condensation is presented. The model belongs to a collection of simulation models that allows eficient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is short computation time and use of input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part load operation mode, which is becoming increasingly important for energy efficient HVAC systems. The models are intended to be used for yearly energy calculation or load calculation with time steps of about 10 minutes or larger. Short-time dynamic effects, which are of interest for different aspects of control performance, are neglected. The part load behavior of the coil is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature on the water side and the air side. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part load conditions. Geometrical data for the coil are not required, The calculation of the convective heat transfer coefficients at nominal conditions is based on the ratio of the air side heat transfer coefficients multiplied by the fin eficiency and divided by the water side heat transfer coefficient. In this approach, the only geometrical information required are the cross section areas, which are needed to calculate the~uid velocities. The formulas for estimating this ratio are presented. For simplicity the model ignores condensation. The model is static and uses only explicit equations. The explicit formulation ensures short computation time and numerical stability. This allows using the model with sophisticated engineering methods such as automatic system optimization. The paper fully outlines the algorithm description and its simplifications. It is not tailored for a particular simulation program to ensure easy implementation in any simulation program.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
7353
Report Number(s):
LBNL-42355; ON: DE00007353
Country of Publication:
United States
Language:
English