Global to push GA events into
skip to main content

Title: Apparatus for producing nanoscale ceramic powders

An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.
 [1];  [2];  [3]
  1. (Andover, MA)
  2. (Windham, NH)
  3. (Little Compton, RI)
Issue Date:
OSTI Identifier:
Physical Sciences, Inc. (Andover, MA) OSTI
Patent Number(s):
US 5447708
Application Number:
Country of Publication:
United States
apparatus; producing; nanoscale; ceramic; powders; provides; temperature; residence; time; conditions; production; confinement; structure; multiple; inclined; surfaces; confining; flame; located; define; zone; burner; employs; burners; provide; close; proximity; delivery; disposed; adjacent; delivers; aerosol; comprising; organic; carbonaceous; carrier; material; precursor; expose; sufficient; induce; combustion; vaporization; nucleation; diffusion; oxidation; form; pure; crystalline; narrow; size; distribution; nanophase; particles; narrow size; inclined surface; inclined surfaces; ceramic powder; apparatus provides; ceramic powders; size distribution; residence time; disposed adjacent; ceramic particles; close proximity; temperature sufficient; ceramic precursor; carrier material; ceramic particle; nanoscale ceramic; phase ceramic; multiple inclined; nanophase ceramic; time conditions; producing nanoscale; confinement structure; /423/501/