Composite oxygen transport membrane
Abstract
A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.
- Inventors:
- Issue Date:
- Research Org.:
- PRAXAIR TECHNOLOGY, INC. Danbury, CT (United States)
- Sponsoring Org.:
- USDOE
- OSTI Identifier:
- 1331385
- Patent Number(s):
- 9486735
- Application Number:
- 14/856,038
- Assignee:
- PRAXAIR TECHNOLOGY, INC. (Danbury, CT)
- Patent Classifications (CPCs):
-
C - CHEMISTRY C04 - CEMENTS C04B - LIME, MAGNESIA
Y - NEW / CROSS SECTIONAL TECHNOLOGIES Y10 - TECHNICAL SUBJECTS COVERED BY FORMER USPC Y10T - TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- DOE Contract Number:
- FC26-07NT43088
- Resource Type:
- Patent
- Resource Relation:
- Patent File Date: 2015 Sep 16
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE
Citation Formats
Lu, Zigui, Plonczak, Pawel J., and Lane, Jonathan A. Composite oxygen transport membrane. United States: N. p., 2016.
Web.
Lu, Zigui, Plonczak, Pawel J., & Lane, Jonathan A. Composite oxygen transport membrane. United States.
Lu, Zigui, Plonczak, Pawel J., and Lane, Jonathan A. Tue .
"Composite oxygen transport membrane". United States. https://www.osti.gov/servlets/purl/1331385.
@article{osti_1331385,
title = {Composite oxygen transport membrane},
author = {Lu, Zigui and Plonczak, Pawel J. and Lane, Jonathan A.},
abstractNote = {A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {11}
}
Works referenced in this record:
Development of interconnect materials for solid oxide fuel cells
journal, May 2003
- Zhu, W. Z.; Deevi, S. C.
- Materials Science and Engineering: A, Vol. 348, Issue 1-2, p. 227-243
Development of oxygen transport membranes for coal-based power generation
journal, January 2011
- Rosen, Lee; Degenstein, Nick; Shah, Minish
- Energy Procedia, Vol. 4, p. 750-755
Efficient Reduction of CO2 in a Solid Oxide Electrolyzer
journal, January 2008
- Bidrawn, F.; Kim, G.; Corre, G.
- Electrochemical and Solid-State Letters, Vol. 11, Issue 9, p. B167-B170
Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells
journal, August 2009
- Ebbesen, Sune Dalgaard; Mogensen, Mogens
- Journal of Power Sources, Vol. 193, Issue 1, p. 349-358
Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues
journal, March 2008
- Deville, S.
- Advanced Engineering Materials, Vol. 10, Issue 3, p. 155-169
Ion transport membrane technology for oxygen separation and syngas production
journal, October 2000
- Dyer, Paul N.; Richards, Robin E.; Russek, Steven L.
- Solid State Ionics, Vol. 134, Issue 1-2, p. 21-33
Methods for the catalytic activation of metallic structured substrates
journal, January 2014
- Montebelli, Andrea; Visconti, Carlo Giorgio; Groppi, Gianpiero
- Catalysis Science & Technology, Vol. 4, Issue 9, p. 2846-2870
Thermomechanical, transport and anodic properties of perovskite-type (La0.75Sr0.25)0.95Cr1−xFexO3−δ
journal, May 2012
- Lü, M. F.; Tsipis, E. V.; Waerenborgh, J. C.
- Journal of Power Sources, Vol. 206, p. 59-69
Tubular zirconia–yttria electrolyte membrane technology for oxygen separation
journal, December 2002
- Ciacchi, F. T.; Badwal, S. P. S.; Zelizko, V.
- Solid State Ionics, Vol. 152-153, p. 763-768
Stoichiometric lanthanum chromite based ceramic interconnects with low sintering temperature
journal, March 2006
- Zhong, Z.
- Solid State Ionics, Vol. 177, Issue 7-8, p. 757-764