DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A multiscale deep learning model for soil moisture integrating satellite and in-situ data

Abstract

Model codes for the article: "A multiscale deep learning model for soil moisture integrating satellite and in-situ data"

Authors:
; ; ;
  1. Pennsylvania State Univ., University Park, PA (United States); Pennsylvania State Univ., University Park, PA (United States)
  2. Pennsylvania State Univ., University Park, PA (United States)
Publication Date:
DOE Contract Number:  
SC0016605
Research Org.:
Univ. of California, Davis, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Subject:
54 ENVIRONMENTAL SCIENCES; LSTM; deep learning; in situ; multiscale; resolution effect; soil moisture
OSTI Identifier:
2217666
DOI:
https://doi.org/10.5281/zenodo.6314345

Citation Formats

Liu, Jiangtao, Rahmani, Farshid, Lawson, Kathryn, and Shen, Chaopeng. A multiscale deep learning model for soil moisture integrating satellite and in-situ data. United States: N. p., 2022. Web. doi:10.5281/zenodo.6314345.
Liu, Jiangtao, Rahmani, Farshid, Lawson, Kathryn, & Shen, Chaopeng. A multiscale deep learning model for soil moisture integrating satellite and in-situ data. United States. doi:https://doi.org/10.5281/zenodo.6314345
Liu, Jiangtao, Rahmani, Farshid, Lawson, Kathryn, and Shen, Chaopeng. 2022. "A multiscale deep learning model for soil moisture integrating satellite and in-situ data". United States. doi:https://doi.org/10.5281/zenodo.6314345. https://www.osti.gov/servlets/purl/2217666. Pub date:Mon Feb 28 04:00:00 UTC 2022
@article{osti_2217666,
title = {A multiscale deep learning model for soil moisture integrating satellite and in-situ data},
author = {Liu, Jiangtao and Rahmani, Farshid and Lawson, Kathryn and Shen, Chaopeng},
abstractNote = {Model codes for the article: "A multiscale deep learning model for soil moisture integrating satellite and in-situ data"},
doi = {10.5281/zenodo.6314345},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Feb 28 04:00:00 UTC 2022},
month = {Mon Feb 28 04:00:00 UTC 2022}
}