SARS-CoV2 Docking Dataset for MLMol Language Model (50M)
Abstract
This is a processed molecular dataset from this https://doi.ccs.ornl.gov/ui/doi/348 adding up to 50M molecules for the training and 486K molecules for the validation. Instructions on how to use/run/train this dataset can be found here: https://code.ornl.gov/candle/mlmol
- Authors:
-
- ORNL-OLCF
- Publication Date:
- DOE Contract Number:
- AC05-00OR22725
- Research Org.:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Org.:
- Office of Science (SC)
- OSTI Identifier:
- 1868526
- DOI:
- https://doi.org/10.13139/ORNLNCCS/1868526
Citation Formats
Tsaris, Aristeidis, Gounley, John, and Blanchard, Andrew. SARS-CoV2 Docking Dataset for MLMol Language Model (50M). United States: N. p., 2022.
Web. doi:10.13139/ORNLNCCS/1868526.
Tsaris, Aristeidis, Gounley, John, & Blanchard, Andrew. SARS-CoV2 Docking Dataset for MLMol Language Model (50M). United States. doi:https://doi.org/10.13139/ORNLNCCS/1868526
Tsaris, Aristeidis, Gounley, John, and Blanchard, Andrew. 2022.
"SARS-CoV2 Docking Dataset for MLMol Language Model (50M)". United States. doi:https://doi.org/10.13139/ORNLNCCS/1868526. https://www.osti.gov/servlets/purl/1868526. Pub date:Fri May 20 04:00:00 UTC 2022
@article{osti_1868526,
title = {SARS-CoV2 Docking Dataset for MLMol Language Model (50M)},
author = {Tsaris, Aristeidis and Gounley, John and Blanchard, Andrew},
abstractNote = {This is a processed molecular dataset from this https://doi.ccs.ornl.gov/ui/doi/348 adding up to 50M molecules for the training and 486K molecules for the validation. Instructions on how to use/run/train this dataset can be found here: https://code.ornl.gov/candle/mlmol},
doi = {10.13139/ORNLNCCS/1868526},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri May 20 04:00:00 UTC 2022},
month = {Fri May 20 04:00:00 UTC 2022}
}
Save to My Library
You must Sign In or Create an Account in order to save documents to your library.
