DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li3Mn2(P2O7)2 by Materials Project

Abstract

Li3Mn2(P2O7)2 crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are twelve inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.93–2.20 Å. In the second Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra, a cornercorner with one MnO5 trigonal bipyramid, and an edgeedge with one LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.91–1.96 Å. In the third Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.94–2.53 Å. In the fourth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four PO4 tetrahedra and an edgeedge with one LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.83–1.97 Å. In the fifth Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.94–2.25 Å. In the sixth Li1+ site, Li1+more » is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.97–2.30 Å. In the seventh Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.84–2.27 Å. In the eighth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra and an edgeedge with one LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.92–1.98 Å. In the ninth Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.98–2.46 Å. In the tenth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four PO4 tetrahedra and an edgeedge with one LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.84–2.01 Å. In the eleventh Li1+ site, Li1+ is bonded in a distorted rectangular see-saw-like geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.86–2.32 Å. In the twelfth Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.95–2.30 Å. There are eight inequivalent Mn+2.50+ sites. In the first Mn+2.50+ site, Mn+2.50+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one MnO5 trigonal bipyramid. There are a spread of Mn–O bond distances ranging from 1.95–2.18 Å. In the second Mn+2.50+ site, Mn+2.50+ is bonded to five O2- atoms to form distorted MnO5 trigonal bipyramids that share a cornercorner with one LiO4 tetrahedra, corners with five PO4 tetrahedra, and an edgeedge with one MnO6 octahedra. There are a spread of Mn–O bond distances ranging from 2.08–2.21 Å. In the third Mn+2.50+ site, Mn+2.50+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Mn–O bond distances ranging from 2.02–2.26 Å. In the fourth Mn+2.50+ site, Mn+2.50+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 1.96–2.19 Å. In the fifth Mn+2.50+ site, Mn+2.50+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 2.04–2.33 Å. In the sixth Mn+2.50+ site, Mn+2.50+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Mn–O bond distances ranging from 2.09–2.25 Å. In the seventh Mn+2.50+ site, Mn+2.50+ is bonded in a 5-coordinate geometry to six O2- atoms. There are a spread of Mn–O bond distances ranging from 2.06–2.74 Å. In the eighth Mn+2.50+ site, Mn+2.50+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 2.09–2.29 Å. There are sixteen inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 51°. There are a spread of P–O bond distances ranging from 1.51–1.59 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 33°. There are a spread of P–O bond distances ranging from 1.49–1.64 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 57°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 29–55°. There are a spread of P–O bond distances ranging from 1.53–1.62 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 33–54°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 57°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 52°. There are a spread of P–O bond distances ranging from 1.49–1.60 Å. In the eighth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 36°. There are a spread of P–O bond distances ranging from 1.51–1.63 Å. In the ninth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 34°. There are a spread of P–O bond distances ranging from 1.49–1.62 Å. In the tenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedral tilt angles are 55°. There are a spread of P–O bond distances ranging from 1.52–1.60 Å. In the eleventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 55°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the twelfth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 32–49°. There are a spread of P–O bond distances ranging from 1.53–1.61 Å. In the thirteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 35–48°. There are a spread of P–O bond distances ranging from 1.53–1.61 Å. In the fourteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 55°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the fifteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 38°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the sixteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedral tilt angles are 55°. There are a spread of P–O bond distances ranging from 1.49–1.61 Å. There are fifty-six inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted trigonal planar geometry to two Li1+ and one P5+ atom. In the second O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Mn+2.50+ and one P5+ atom. In the third O2- site, O2- is bonded in a distorted trigonal planar geometry to two Mn+2.50+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a trigonal planar geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the fifth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two P5+ atoms. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn+2.50+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted tetrahedral geometry to two Li1+, one Mn+2.50+, and one P5+ atom. In the eighth O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two P5+ atoms. In the tenth O2- site, O2- is bonded in a 3-coordinate geometry to two Li1+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a 4-coordinate geometry to one Li1+, two Mn+2.50+, and one P5+ atom. In the twelfth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a trigonal non-coplanar geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the fourteenth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the fifteenth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the sixteenth O2- site, O2- is bonded in a trigonal non-coplanar geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the seventeenth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the eighteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to two Mn+2.50+ and one P5+ atom. In the nineteenth O2- site, O2- is bonded in a bent 120 degrees geometry to two P5+ atoms. In the twentieth O2- site, O2- is bonded in a distorted trigonal planar geometry to two Li1+ and one P5+ atom. In the twenty-first O2- site, O2- is bonded in a bent 120 degrees geometry to one Li1+ and one P5+ atom. In the twenty-second O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the twenty-third O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the twenty-fourth O2- site, O2- is bonded in a« less

Publication Date:
Other Number(s):
mp-1177664
DOE Contract Number:  
AC02-05CH11231
Research Org.:
LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Collaborations:
The Materials Project; MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE; Li-Mn-O-P; Li3Mn2(P2O7)2; crystal structure
OSTI Identifier:
1752467
DOI:
https://doi.org/10.17188/1752467

Citation Formats

Materials Data on Li3Mn2(P2O7)2 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1752467.
Materials Data on Li3Mn2(P2O7)2 by Materials Project. United States. doi:https://doi.org/10.17188/1752467
2020. "Materials Data on Li3Mn2(P2O7)2 by Materials Project". United States. doi:https://doi.org/10.17188/1752467. https://www.osti.gov/servlets/purl/1752467. Pub date:Wed Apr 29 04:00:00 UTC 2020
@article{osti_1752467,
title = {Materials Data on Li3Mn2(P2O7)2 by Materials Project},
abstractNote = {Li3Mn2(P2O7)2 crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are twelve inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.93–2.20 Å. In the second Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra, a cornercorner with one MnO5 trigonal bipyramid, and an edgeedge with one LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.91–1.96 Å. In the third Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.94–2.53 Å. In the fourth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four PO4 tetrahedra and an edgeedge with one LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.83–1.97 Å. In the fifth Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.94–2.25 Å. In the sixth Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.97–2.30 Å. In the seventh Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.84–2.27 Å. In the eighth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra and an edgeedge with one LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.92–1.98 Å. In the ninth Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.98–2.46 Å. In the tenth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four PO4 tetrahedra and an edgeedge with one LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.84–2.01 Å. In the eleventh Li1+ site, Li1+ is bonded in a distorted rectangular see-saw-like geometry to four O2- atoms. There are a spread of Li–O bond distances ranging from 1.86–2.32 Å. In the twelfth Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.95–2.30 Å. There are eight inequivalent Mn+2.50+ sites. In the first Mn+2.50+ site, Mn+2.50+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one MnO5 trigonal bipyramid. There are a spread of Mn–O bond distances ranging from 1.95–2.18 Å. In the second Mn+2.50+ site, Mn+2.50+ is bonded to five O2- atoms to form distorted MnO5 trigonal bipyramids that share a cornercorner with one LiO4 tetrahedra, corners with five PO4 tetrahedra, and an edgeedge with one MnO6 octahedra. There are a spread of Mn–O bond distances ranging from 2.08–2.21 Å. In the third Mn+2.50+ site, Mn+2.50+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Mn–O bond distances ranging from 2.02–2.26 Å. In the fourth Mn+2.50+ site, Mn+2.50+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 1.96–2.19 Å. In the fifth Mn+2.50+ site, Mn+2.50+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 2.04–2.33 Å. In the sixth Mn+2.50+ site, Mn+2.50+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Mn–O bond distances ranging from 2.09–2.25 Å. In the seventh Mn+2.50+ site, Mn+2.50+ is bonded in a 5-coordinate geometry to six O2- atoms. There are a spread of Mn–O bond distances ranging from 2.06–2.74 Å. In the eighth Mn+2.50+ site, Mn+2.50+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Mn–O bond distances ranging from 2.09–2.29 Å. There are sixteen inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 51°. There are a spread of P–O bond distances ranging from 1.51–1.59 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 33°. There are a spread of P–O bond distances ranging from 1.49–1.64 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 57°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 29–55°. There are a spread of P–O bond distances ranging from 1.53–1.62 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 33–54°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 57°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 52°. There are a spread of P–O bond distances ranging from 1.49–1.60 Å. In the eighth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 36°. There are a spread of P–O bond distances ranging from 1.51–1.63 Å. In the ninth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 34°. There are a spread of P–O bond distances ranging from 1.49–1.62 Å. In the tenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedral tilt angles are 55°. There are a spread of P–O bond distances ranging from 1.52–1.60 Å. In the eleventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 55°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the twelfth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 32–49°. There are a spread of P–O bond distances ranging from 1.53–1.61 Å. In the thirteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 35–48°. There are a spread of P–O bond distances ranging from 1.53–1.61 Å. In the fourteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, and a cornercorner with one MnO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 55°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the fifteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 38°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the sixteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one MnO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedral tilt angles are 55°. There are a spread of P–O bond distances ranging from 1.49–1.61 Å. There are fifty-six inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted trigonal planar geometry to two Li1+ and one P5+ atom. In the second O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Mn+2.50+ and one P5+ atom. In the third O2- site, O2- is bonded in a distorted trigonal planar geometry to two Mn+2.50+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a trigonal planar geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the fifth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two P5+ atoms. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mn+2.50+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted tetrahedral geometry to two Li1+, one Mn+2.50+, and one P5+ atom. In the eighth O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two P5+ atoms. In the tenth O2- site, O2- is bonded in a 3-coordinate geometry to two Li1+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a 4-coordinate geometry to one Li1+, two Mn+2.50+, and one P5+ atom. In the twelfth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a trigonal non-coplanar geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the fourteenth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the fifteenth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the sixteenth O2- site, O2- is bonded in a trigonal non-coplanar geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the seventeenth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the eighteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to two Mn+2.50+ and one P5+ atom. In the nineteenth O2- site, O2- is bonded in a bent 120 degrees geometry to two P5+ atoms. In the twentieth O2- site, O2- is bonded in a distorted trigonal planar geometry to two Li1+ and one P5+ atom. In the twenty-first O2- site, O2- is bonded in a bent 120 degrees geometry to one Li1+ and one P5+ atom. In the twenty-second O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the twenty-third O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Mn+2.50+, and one P5+ atom. In the twenty-fourth O2- site, O2- is bonded in a},
doi = {10.17188/1752467},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Apr 29 04:00:00 UTC 2020},
month = {Wed Apr 29 04:00:00 UTC 2020}
}