DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li4MnCo2O7 by Materials Project

Abstract

Li4MnCo2O7 is Caswellsilverite-derived structured and crystallizes in the monoclinic C2/m space group. The structure is three-dimensional. there are five inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one CoO6 octahedra, corners with two equivalent LiO6 octahedra, corners with three equivalent MnO6 octahedra, edges with three equivalent MnO6 octahedra, and edges with nine LiO6 octahedra. The corner-sharing octahedra tilt angles range from 2–13°. There are a spread of Li–O bond distances ranging from 2.03–2.31 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one LiO6 octahedra, corners with two equivalent MnO6 octahedra, corners with three CoO6 octahedra, edges with three equivalent MnO6 octahedra, edges with three equivalent CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–11°. There are a spread of Li–O bond distances ranging from 2.04–2.23 Å. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one MnO6 octahedra, corners with five CoO6 octahedra, edges with six LiO6 octahedra, and edges withmore » six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 3–5°. There are two shorter (2.12 Å) and four longer (2.14 Å) Li–O bond lengths. In the fourth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six CoO6 octahedra, edges with six LiO6 octahedra, and edges with six equivalent CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–5°. There are two shorter (2.10 Å) and four longer (2.13 Å) Li–O bond lengths. In the fifth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six LiO6 octahedra, edges with four equivalent MnO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 11–13°. There are two shorter (2.08 Å) and four longer (2.15 Å) Li–O bond lengths. Mn2+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with two equivalent MnO6 octahedra, edges with two equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 2–12°. There are a spread of Mn–O bond distances ranging from 1.82–2.05 Å. There are two inequivalent Co4+ sites. In the first Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with two equivalent MnO6 octahedra, edges with four CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–6°. There are a spread of Co–O bond distances ranging from 1.94–2.07 Å. In the second Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 3–5°. There are two shorter (1.96 Å) and four longer (2.06 Å) Co–O bond lengths. There are seven inequivalent O2- sites. In the first O2- site, O2- is bonded to three Li1+ and three Co4+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–1°. In the second O2- site, O2- is bonded to three Li1+ and three equivalent Co4+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–1°. In the third O2- site, O2- is bonded to three Li1+ and three Co4+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 1–2°. In the fourth O2- site, O2- is bonded to three Li1+, two equivalent Mn2+, and one Co4+ atom to form a mixture of edge and corner-sharing OLi3Mn2Co octahedra. The corner-sharing octahedra tilt angles range from 1–8°. In the fifth O2- site, O2- is bonded to five Li1+ and one Mn2+ atom to form a mixture of edge and corner-sharing OLi5Mn octahedra. The corner-sharing octahedra tilt angles range from 0–14°. In the sixth O2- site, O2- is bonded to four Li1+ and two equivalent Mn2+ atoms to form OLi4Mn2 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi3Mn2Co octahedra. The corner-sharing octahedra tilt angles range from 0–14°. In the seventh O2- site, O2- is bonded to three Li1+, one Mn2+, and two equivalent Co4+ atoms to form a mixture of edge and corner-sharing OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 1–5°.« less

Authors:
Publication Date:
Other Number(s):
mp-1174581
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Li4MnCo2O7; Co-Li-Mn-O
OSTI Identifier:
1749059
DOI:
https://doi.org/10.17188/1749059

Citation Formats

The Materials Project. Materials Data on Li4MnCo2O7 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1749059.
The Materials Project. Materials Data on Li4MnCo2O7 by Materials Project. United States. doi:https://doi.org/10.17188/1749059
The Materials Project. 2020. "Materials Data on Li4MnCo2O7 by Materials Project". United States. doi:https://doi.org/10.17188/1749059. https://www.osti.gov/servlets/purl/1749059. Pub date:Fri May 01 00:00:00 EDT 2020
@article{osti_1749059,
title = {Materials Data on Li4MnCo2O7 by Materials Project},
author = {The Materials Project},
abstractNote = {Li4MnCo2O7 is Caswellsilverite-derived structured and crystallizes in the monoclinic C2/m space group. The structure is three-dimensional. there are five inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one CoO6 octahedra, corners with two equivalent LiO6 octahedra, corners with three equivalent MnO6 octahedra, edges with three equivalent MnO6 octahedra, and edges with nine LiO6 octahedra. The corner-sharing octahedra tilt angles range from 2–13°. There are a spread of Li–O bond distances ranging from 2.03–2.31 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one LiO6 octahedra, corners with two equivalent MnO6 octahedra, corners with three CoO6 octahedra, edges with three equivalent MnO6 octahedra, edges with three equivalent CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–11°. There are a spread of Li–O bond distances ranging from 2.04–2.23 Å. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share a cornercorner with one MnO6 octahedra, corners with five CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 3–5°. There are two shorter (2.12 Å) and four longer (2.14 Å) Li–O bond lengths. In the fourth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six CoO6 octahedra, edges with six LiO6 octahedra, and edges with six equivalent CoO6 octahedra. The corner-sharing octahedra tilt angles range from 4–5°. There are two shorter (2.10 Å) and four longer (2.13 Å) Li–O bond lengths. In the fifth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six LiO6 octahedra, edges with four equivalent MnO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 11–13°. There are two shorter (2.08 Å) and four longer (2.15 Å) Li–O bond lengths. Mn2+ is bonded to six O2- atoms to form MnO6 octahedra that share corners with six LiO6 octahedra, edges with two equivalent MnO6 octahedra, edges with two equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 2–12°. There are a spread of Mn–O bond distances ranging from 1.82–2.05 Å. There are two inequivalent Co4+ sites. In the first Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with two equivalent MnO6 octahedra, edges with four CoO6 octahedra, and edges with six LiO6 octahedra. The corner-sharing octahedra tilt angles range from 4–6°. There are a spread of Co–O bond distances ranging from 1.94–2.07 Å. In the second Co4+ site, Co4+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 3–5°. There are two shorter (1.96 Å) and four longer (2.06 Å) Co–O bond lengths. There are seven inequivalent O2- sites. In the first O2- site, O2- is bonded to three Li1+ and three Co4+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–1°. In the second O2- site, O2- is bonded to three Li1+ and three equivalent Co4+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–1°. In the third O2- site, O2- is bonded to three Li1+ and three Co4+ atoms to form a mixture of edge and corner-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 1–2°. In the fourth O2- site, O2- is bonded to three Li1+, two equivalent Mn2+, and one Co4+ atom to form a mixture of edge and corner-sharing OLi3Mn2Co octahedra. The corner-sharing octahedra tilt angles range from 1–8°. In the fifth O2- site, O2- is bonded to five Li1+ and one Mn2+ atom to form a mixture of edge and corner-sharing OLi5Mn octahedra. The corner-sharing octahedra tilt angles range from 0–14°. In the sixth O2- site, O2- is bonded to four Li1+ and two equivalent Mn2+ atoms to form OLi4Mn2 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi3Mn2Co octahedra. The corner-sharing octahedra tilt angles range from 0–14°. In the seventh O2- site, O2- is bonded to three Li1+, one Mn2+, and two equivalent Co4+ atoms to form a mixture of edge and corner-sharing OLi3MnCo2 octahedra. The corner-sharing octahedra tilt angles range from 1–5°.},
doi = {10.17188/1749059},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {5}
}