Materials Data on V3(H3O5)2 by Materials Project
Abstract
V3(H3O5)2 crystallizes in the triclinic P1 space group. The structure is two-dimensional and consists of one V3(H3O5)2 sheet oriented in the (1, 0, 0) direction. there are six inequivalent V+4.67+ sites. In the first V+4.67+ site, V+4.67+ is bonded to five O2- atoms to form distorted corner-sharing VO5 trigonal bipyramids. There are a spread of V–O bond distances ranging from 1.71–1.98 Å. In the second V+4.67+ site, V+4.67+ is bonded to five O2- atoms to form distorted corner-sharing VO5 trigonal bipyramids. There are a spread of V–O bond distances ranging from 1.66–2.01 Å. In the third V+4.67+ site, V+4.67+ is bonded to four O2- atoms to form VO4 tetrahedra that share a cornercorner with one VO4 tetrahedra and corners with two VO5 trigonal bipyramids. There are a spread of V–O bond distances ranging from 1.65–1.82 Å. In the fourth V+4.67+ site, V+4.67+ is bonded to four O2- atoms to form VO4 tetrahedra that share a cornercorner with one VO4 tetrahedra and corners with two VO5 trigonal bipyramids. There are a spread of V–O bond distances ranging from 1.72–1.80 Å. In the fifth V+4.67+ site, V+4.67+ is bonded to four O2- atoms to form VO4 tetrahedra that share a cornercorner withmore »
- Authors:
- Publication Date:
- Other Number(s):
- mp-1179176
- DOE Contract Number:
- AC02-05CH11231; EDCBEE
- Research Org.:
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
- Sponsoring Org.:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Collaborations:
- MIT; UC Berkeley; Duke; U Louvain
- Subject:
- 36 MATERIALS SCIENCE
- Keywords:
- crystal structure; V3(H3O5)2; H-O-V
- OSTI Identifier:
- 1651516
- DOI:
- https://doi.org/10.17188/1651516
Citation Formats
The Materials Project. Materials Data on V3(H3O5)2 by Materials Project. United States: N. p., 2020.
Web. doi:10.17188/1651516.
The Materials Project. Materials Data on V3(H3O5)2 by Materials Project. United States. doi:https://doi.org/10.17188/1651516
The Materials Project. 2020.
"Materials Data on V3(H3O5)2 by Materials Project". United States. doi:https://doi.org/10.17188/1651516. https://www.osti.gov/servlets/purl/1651516. Pub date:Thu Apr 30 00:00:00 EDT 2020
@article{osti_1651516,
title = {Materials Data on V3(H3O5)2 by Materials Project},
author = {The Materials Project},
abstractNote = {V3(H3O5)2 crystallizes in the triclinic P1 space group. The structure is two-dimensional and consists of one V3(H3O5)2 sheet oriented in the (1, 0, 0) direction. there are six inequivalent V+4.67+ sites. In the first V+4.67+ site, V+4.67+ is bonded to five O2- atoms to form distorted corner-sharing VO5 trigonal bipyramids. There are a spread of V–O bond distances ranging from 1.71–1.98 Å. In the second V+4.67+ site, V+4.67+ is bonded to five O2- atoms to form distorted corner-sharing VO5 trigonal bipyramids. There are a spread of V–O bond distances ranging from 1.66–2.01 Å. In the third V+4.67+ site, V+4.67+ is bonded to four O2- atoms to form VO4 tetrahedra that share a cornercorner with one VO4 tetrahedra and corners with two VO5 trigonal bipyramids. There are a spread of V–O bond distances ranging from 1.65–1.82 Å. In the fourth V+4.67+ site, V+4.67+ is bonded to four O2- atoms to form VO4 tetrahedra that share a cornercorner with one VO4 tetrahedra and corners with two VO5 trigonal bipyramids. There are a spread of V–O bond distances ranging from 1.72–1.80 Å. In the fifth V+4.67+ site, V+4.67+ is bonded to four O2- atoms to form VO4 tetrahedra that share a cornercorner with one VO4 tetrahedra and corners with two VO5 trigonal bipyramids. There are a spread of V–O bond distances ranging from 1.68–1.83 Å. In the sixth V+4.67+ site, V+4.67+ is bonded to four O2- atoms to form VO4 tetrahedra that share a cornercorner with one VO4 tetrahedra and corners with two VO5 trigonal bipyramids. There are a spread of V–O bond distances ranging from 1.70–1.78 Å. There are twelve inequivalent H1+ sites. In the first H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.11 Å) and one longer (1.36 Å) H–O bond length. In the second H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.06 Å) and one longer (1.44 Å) H–O bond length. In the third H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.06 Å) and one longer (1.44 Å) H–O bond length. In the fourth H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.06 Å) and one longer (1.46 Å) H–O bond length. In the fifth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the sixth H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.04 Å) and one longer (1.51 Å) H–O bond length. In the seventh H1+ site, H1+ is bonded in a distorted linear geometry to two O2- atoms. There is one shorter (1.03 Å) and one longer (1.56 Å) H–O bond length. In the eighth H1+ site, H1+ is bonded in a distorted single-bond geometry to two O2- atoms. There is one shorter (1.02 Å) and one longer (1.63 Å) H–O bond length. In the ninth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. In the tenth H1+ site, H1+ is bonded in a distorted single-bond geometry to two O2- atoms. There is one shorter (1.00 Å) and one longer (1.68 Å) H–O bond length. In the eleventh H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. In the twelfth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. There are twenty inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 120 degrees geometry to one V+4.67+ and one H1+ atom. In the second O2- site, O2- is bonded in a bent 120 degrees geometry to one V+4.67+ and one H1+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to two V+4.67+ atoms. In the fourth O2- site, O2- is bonded in a bent 150 degrees geometry to two V+4.67+ atoms. In the fifth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two V+4.67+ atoms. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to two V+4.67+ atoms. In the seventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two V+4.67+ atoms. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to two V+4.67+ atoms. In the ninth O2- site, O2- is bonded in a bent 150 degrees geometry to two V+4.67+ atoms. In the tenth O2- site, O2- is bonded in a bent 120 degrees geometry to two V+4.67+ atoms. In the eleventh O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one V+4.67+ and one H1+ atom. In the twelfth O2- site, O2- is bonded in a trigonal planar geometry to one V+4.67+ and two H1+ atoms. In the thirteenth O2- site, O2- is bonded in a bent 120 degrees geometry to one V+4.67+ and one H1+ atom. In the fourteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to one V+4.67+ and two H1+ atoms. In the fifteenth O2- site, O2- is bonded in a bent 150 degrees geometry to two V+4.67+ atoms. In the sixteenth O2- site, O2- is bonded in a linear geometry to two V+4.67+ atoms. In the seventeenth O2- site, O2- is bonded in a trigonal non-coplanar geometry to three H1+ atoms. In the eighteenth O2- site, O2- is bonded in a trigonal non-coplanar geometry to three H1+ atoms. In the nineteenth O2- site, O2- is bonded in a trigonal non-coplanar geometry to three H1+ atoms. In the twentieth O2- site, O2- is bonded in a trigonal non-coplanar geometry to three H1+ atoms.},
doi = {10.17188/1651516},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {4}
}