skip to main content
DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsurface CO2 Migration

Abstract

NRAP TRS

Authors:
; ; ; ; ; ; ; ;
Publication Date:
Other Number(s):
dad36374-3070-46c3-90b3-7cd668e8507f
DOE Contract Number:  
1022407
Product Type:
Dataset
Research Org.:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States). Energy Data eXchange; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
Keywords:
TRS
OSTI Identifier:
1432937
DOI:
10.18141/1432937

Citation Formats

Kowalsky, M B, Doetsch, J, Commer, M, Finsterle, S, Doughty, C, Zhou, Q, Ajo-Franklin, J, Birkholzer, J, and Daley, T. Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsurface CO2 Migration. United States: N. p., 2016. Web. doi:10.18141/1432937.
Kowalsky, M B, Doetsch, J, Commer, M, Finsterle, S, Doughty, C, Zhou, Q, Ajo-Franklin, J, Birkholzer, J, & Daley, T. Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsurface CO2 Migration. United States. doi:10.18141/1432937.
Kowalsky, M B, Doetsch, J, Commer, M, Finsterle, S, Doughty, C, Zhou, Q, Ajo-Franklin, J, Birkholzer, J, and Daley, T. 2016. "Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsurface CO2 Migration". United States. doi:10.18141/1432937. https://www.osti.gov/servlets/purl/1432937. Pub date:Thu Jan 28 00:00:00 EST 2016
@article{osti_1432937,
title = {Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsurface CO2 Migration},
author = {Kowalsky, M B and Doetsch, J and Commer, M and Finsterle, S and Doughty, C and Zhou, Q and Ajo-Franklin, J and Birkholzer, J and Daley, T},
abstractNote = {NRAP TRS},
doi = {10.18141/1432937},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {1}
}

Dataset:

Save / Share: