DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Cr2Fe3Ni(PO4)6 by Materials Project

Abstract

Cr2Fe3Ni(PO4)6 crystallizes in the trigonal R3 space group. The structure is three-dimensional. there are two inequivalent Cr+3.50+ sites. In the first Cr+3.50+ site, Cr+3.50+ is bonded to six O2- atoms to form distorted CrO6 octahedra that share corners with six PO4 tetrahedra, a faceface with one FeO6 octahedra, and a faceface with one NiO6 octahedra. There are three shorter (2.06 Å) and three longer (2.08 Å) Cr–O bond lengths. In the second Cr+3.50+ site, Cr+3.50+ is bonded to six O2- atoms to form distorted CrO6 octahedra that share corners with six PO4 tetrahedra and faces with two FeO6 octahedra. All Cr–O bond lengths are 2.07 Å. There are three inequivalent Fe3+ sites. In the first Fe3+ site, Fe3+ is bonded to six O2- atoms to form distorted FeO6 octahedra that share corners with six PO4 tetrahedra and a faceface with one CrO6 octahedra. There are three shorter (1.93 Å) and three longer (2.12 Å) Fe–O bond lengths. In the second Fe3+ site, Fe3+ is bonded to six O2- atoms to form distorted FeO6 octahedra that share corners with six PO4 tetrahedra and a faceface with one CrO6 octahedra. There are three shorter (1.92 Å) and three longer (2.11 Å) Fe–Omore » bond lengths. In the third Fe3+ site, Fe3+ is bonded to six O2- atoms to form distorted FeO6 octahedra that share corners with six PO4 tetrahedra and a faceface with one CrO6 octahedra. There are three shorter (1.92 Å) and three longer (2.13 Å) Fe–O bond lengths. Ni2+ is bonded to six O2- atoms to form distorted NiO6 octahedra that share corners with six PO4 tetrahedra and a faceface with one CrO6 octahedra. There are three shorter (1.97 Å) and three longer (2.10 Å) Ni–O bond lengths. There are two inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one NiO6 octahedra, corners with two CrO6 octahedra, and corners with three FeO6 octahedra. The corner-sharing octahedra tilt angles range from 30–55°. There are a spread of P–O bond distances ranging from 1.51–1.58 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one NiO6 octahedra, corners with two CrO6 octahedra, and corners with three FeO6 octahedra. The corner-sharing octahedra tilt angles range from 30–55°. There are a spread of P–O bond distances ranging from 1.52–1.58 Å. There are eight inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the second O2- site, O2- is bonded in a 3-coordinate geometry to one Cr+3.50+, one Fe3+, and one P5+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to one Ni2+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a 3-coordinate geometry to one Cr+3.50+, one Fe3+, and one P5+ atom. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a 3-coordinate geometry to one Cr+3.50+, one Ni2+, and one P5+ atom. In the seventh O2- site, O2- is bonded in a 3-coordinate geometry to one Cr+3.50+, one Fe3+, and one P5+ atom. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom.« less

Authors:
Publication Date:
Other Number(s):
mp-776011
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Cr2Fe3Ni(PO4)6; Cr-Fe-Ni-O-P
OSTI Identifier:
1304080
DOI:
https://doi.org/10.17188/1304080

Citation Formats

The Materials Project. Materials Data on Cr2Fe3Ni(PO4)6 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1304080.
The Materials Project. Materials Data on Cr2Fe3Ni(PO4)6 by Materials Project. United States. doi:https://doi.org/10.17188/1304080
The Materials Project. 2020. "Materials Data on Cr2Fe3Ni(PO4)6 by Materials Project". United States. doi:https://doi.org/10.17188/1304080. https://www.osti.gov/servlets/purl/1304080. Pub date:Mon Aug 03 00:00:00 EDT 2020
@article{osti_1304080,
title = {Materials Data on Cr2Fe3Ni(PO4)6 by Materials Project},
author = {The Materials Project},
abstractNote = {Cr2Fe3Ni(PO4)6 crystallizes in the trigonal R3 space group. The structure is three-dimensional. there are two inequivalent Cr+3.50+ sites. In the first Cr+3.50+ site, Cr+3.50+ is bonded to six O2- atoms to form distorted CrO6 octahedra that share corners with six PO4 tetrahedra, a faceface with one FeO6 octahedra, and a faceface with one NiO6 octahedra. There are three shorter (2.06 Å) and three longer (2.08 Å) Cr–O bond lengths. In the second Cr+3.50+ site, Cr+3.50+ is bonded to six O2- atoms to form distorted CrO6 octahedra that share corners with six PO4 tetrahedra and faces with two FeO6 octahedra. All Cr–O bond lengths are 2.07 Å. There are three inequivalent Fe3+ sites. In the first Fe3+ site, Fe3+ is bonded to six O2- atoms to form distorted FeO6 octahedra that share corners with six PO4 tetrahedra and a faceface with one CrO6 octahedra. There are three shorter (1.93 Å) and three longer (2.12 Å) Fe–O bond lengths. In the second Fe3+ site, Fe3+ is bonded to six O2- atoms to form distorted FeO6 octahedra that share corners with six PO4 tetrahedra and a faceface with one CrO6 octahedra. There are three shorter (1.92 Å) and three longer (2.11 Å) Fe–O bond lengths. In the third Fe3+ site, Fe3+ is bonded to six O2- atoms to form distorted FeO6 octahedra that share corners with six PO4 tetrahedra and a faceface with one CrO6 octahedra. There are three shorter (1.92 Å) and three longer (2.13 Å) Fe–O bond lengths. Ni2+ is bonded to six O2- atoms to form distorted NiO6 octahedra that share corners with six PO4 tetrahedra and a faceface with one CrO6 octahedra. There are three shorter (1.97 Å) and three longer (2.10 Å) Ni–O bond lengths. There are two inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one NiO6 octahedra, corners with two CrO6 octahedra, and corners with three FeO6 octahedra. The corner-sharing octahedra tilt angles range from 30–55°. There are a spread of P–O bond distances ranging from 1.51–1.58 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one NiO6 octahedra, corners with two CrO6 octahedra, and corners with three FeO6 octahedra. The corner-sharing octahedra tilt angles range from 30–55°. There are a spread of P–O bond distances ranging from 1.52–1.58 Å. There are eight inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the second O2- site, O2- is bonded in a 3-coordinate geometry to one Cr+3.50+, one Fe3+, and one P5+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to one Ni2+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a 3-coordinate geometry to one Cr+3.50+, one Fe3+, and one P5+ atom. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a 3-coordinate geometry to one Cr+3.50+, one Ni2+, and one P5+ atom. In the seventh O2- site, O2- is bonded in a 3-coordinate geometry to one Cr+3.50+, one Fe3+, and one P5+ atom. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom.},
doi = {10.17188/1304080},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Aug 03 00:00:00 EDT 2020},
month = {Mon Aug 03 00:00:00 EDT 2020}
}