DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li2V(Si2O5)3 by Materials Project

Abstract

Li2V(Si2O5)3 crystallizes in the monoclinic Cc space group. The structure is three-dimensional. there are two inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded in a distorted trigonal non-coplanar geometry to three O2- atoms. There are a spread of Li–O bond distances ranging from 1.98–2.57 Å. In the second Li1+ site, Li1+ is bonded in a 3-coordinate geometry to three O2- atoms. There are a spread of Li–O bond distances ranging from 1.94–2.33 Å. V4+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six SiO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.86–2.08 Å. There are six inequivalent Si4+ sites. In the first Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one VO6 octahedra and corners with three SiO4 tetrahedra. The corner-sharing octahedral tilt angles are 44°. There are a spread of Si–O bond distances ranging from 1.61–1.66 Å. In the second Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one VO6 octahedra and corners with three SiO4 tetrahedra. The corner-sharing octahedral tilt angles are 46°. There ismore » three shorter (1.62 Å) and one longer (1.67 Å) Si–O bond length. In the third Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one VO6 octahedra and corners with three SiO4 tetrahedra. The corner-sharing octahedral tilt angles are 52°. There are a spread of Si–O bond distances ranging from 1.61–1.68 Å. In the fourth Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one VO6 octahedra and corners with three SiO4 tetrahedra. The corner-sharing octahedral tilt angles are 43°. There are a spread of Si–O bond distances ranging from 1.62–1.65 Å. In the fifth Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one VO6 octahedra and corners with three SiO4 tetrahedra. The corner-sharing octahedral tilt angles are 51°. There are a spread of Si–O bond distances ranging from 1.61–1.65 Å. In the sixth Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one VO6 octahedra and corners with three SiO4 tetrahedra. The corner-sharing octahedral tilt angles are 58°. There are a spread of Si–O bond distances ranging from 1.62–1.65 Å. There are fifteen inequivalent O2- sites. In the first O2- site, O2- is bonded in a trigonal planar geometry to one Li1+, one V4+, and one Si4+ atom. In the second O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V4+, and one Si4+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to two Si4+ atoms. In the fourth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V4+, and one Si4+ atom. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to two Si4+ atoms. In the sixth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V4+, and one Si4+ atom. In the seventh O2- site, O2- is bonded in a 2-coordinate geometry to one Li1+ and two Si4+ atoms. In the eighth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Li1+ and two Si4+ atoms. In the ninth O2- site, O2- is bonded in a linear geometry to two Si4+ atoms. In the tenth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one V4+ and one Si4+ atom. In the eleventh O2- site, O2- is bonded in a bent 120 degrees geometry to two Si4+ atoms. In the twelfth O2- site, O2- is bonded in a bent 120 degrees geometry to two Si4+ atoms. In the thirteenth O2- site, O2- is bonded in a bent 120 degrees geometry to two Si4+ atoms. In the fourteenth O2- site, O2- is bonded in a bent 150 degrees geometry to two Si4+ atoms. In the fifteenth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one V4+ and one Si4+ atom.« less

Authors:
Publication Date:
Other Number(s):
mp-767777
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; Li2V(Si2O5)3; Li-O-Si-V
OSTI Identifier:
1297879
DOI:
https://doi.org/10.17188/1297879

Citation Formats

The Materials Project. Materials Data on Li2V(Si2O5)3 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1297879.
The Materials Project. Materials Data on Li2V(Si2O5)3 by Materials Project. United States. doi:https://doi.org/10.17188/1297879
The Materials Project. 2020. "Materials Data on Li2V(Si2O5)3 by Materials Project". United States. doi:https://doi.org/10.17188/1297879. https://www.osti.gov/servlets/purl/1297879. Pub date:Thu Apr 30 00:00:00 EDT 2020
@article{osti_1297879,
title = {Materials Data on Li2V(Si2O5)3 by Materials Project},
author = {The Materials Project},
abstractNote = {Li2V(Si2O5)3 crystallizes in the monoclinic Cc space group. The structure is three-dimensional. there are two inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded in a distorted trigonal non-coplanar geometry to three O2- atoms. There are a spread of Li–O bond distances ranging from 1.98–2.57 Å. In the second Li1+ site, Li1+ is bonded in a 3-coordinate geometry to three O2- atoms. There are a spread of Li–O bond distances ranging from 1.94–2.33 Å. V4+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six SiO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.86–2.08 Å. There are six inequivalent Si4+ sites. In the first Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one VO6 octahedra and corners with three SiO4 tetrahedra. The corner-sharing octahedral tilt angles are 44°. There are a spread of Si–O bond distances ranging from 1.61–1.66 Å. In the second Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one VO6 octahedra and corners with three SiO4 tetrahedra. The corner-sharing octahedral tilt angles are 46°. There is three shorter (1.62 Å) and one longer (1.67 Å) Si–O bond length. In the third Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one VO6 octahedra and corners with three SiO4 tetrahedra. The corner-sharing octahedral tilt angles are 52°. There are a spread of Si–O bond distances ranging from 1.61–1.68 Å. In the fourth Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one VO6 octahedra and corners with three SiO4 tetrahedra. The corner-sharing octahedral tilt angles are 43°. There are a spread of Si–O bond distances ranging from 1.62–1.65 Å. In the fifth Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one VO6 octahedra and corners with three SiO4 tetrahedra. The corner-sharing octahedral tilt angles are 51°. There are a spread of Si–O bond distances ranging from 1.61–1.65 Å. In the sixth Si4+ site, Si4+ is bonded to four O2- atoms to form SiO4 tetrahedra that share a cornercorner with one VO6 octahedra and corners with three SiO4 tetrahedra. The corner-sharing octahedral tilt angles are 58°. There are a spread of Si–O bond distances ranging from 1.62–1.65 Å. There are fifteen inequivalent O2- sites. In the first O2- site, O2- is bonded in a trigonal planar geometry to one Li1+, one V4+, and one Si4+ atom. In the second O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V4+, and one Si4+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to two Si4+ atoms. In the fourth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V4+, and one Si4+ atom. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to two Si4+ atoms. In the sixth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V4+, and one Si4+ atom. In the seventh O2- site, O2- is bonded in a 2-coordinate geometry to one Li1+ and two Si4+ atoms. In the eighth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Li1+ and two Si4+ atoms. In the ninth O2- site, O2- is bonded in a linear geometry to two Si4+ atoms. In the tenth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one V4+ and one Si4+ atom. In the eleventh O2- site, O2- is bonded in a bent 120 degrees geometry to two Si4+ atoms. In the twelfth O2- site, O2- is bonded in a bent 120 degrees geometry to two Si4+ atoms. In the thirteenth O2- site, O2- is bonded in a bent 120 degrees geometry to two Si4+ atoms. In the fourteenth O2- site, O2- is bonded in a bent 150 degrees geometry to two Si4+ atoms. In the fifteenth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one V4+ and one Si4+ atom.},
doi = {10.17188/1297879},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Apr 30 00:00:00 EDT 2020},
month = {Thu Apr 30 00:00:00 EDT 2020}
}