DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on LiFe4P7O24 by Materials Project

Abstract

LiFe4P7O24 crystallizes in the triclinic P-1 space group. The structure is three-dimensional. Li1+ is bonded in a 1-coordinate geometry to three O2- atoms. There are a spread of Li–O bond distances ranging from 2.67–2.81 Å. There are four inequivalent Fe3+ sites. In the first Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 1.91–2.19 Å. In the second Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 1.93–2.19 Å. In the third Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 1.95–2.20 Å. In the fourth Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one FeO6 octahedra. There are amore » spread of Fe–O bond distances ranging from 1.96–2.13 Å. There are seven inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three FeO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 36–46°. There are a spread of P–O bond distances ranging from 1.52–1.64 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three FeO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 16–55°. There are a spread of P–O bond distances ranging from 1.51–1.65 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 17–60°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with five FeO6 octahedra. The corner-sharing octahedra tilt angles range from 18–57°. There are a spread of P–O bond distances ranging from 1.53–1.58 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 9–54°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three FeO6 octahedra and corners with two PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 23–54°. There are a spread of P–O bond distances ranging from 1.49–1.61 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two FeO6 octahedra and corners with two PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 28–39°. There are a spread of P–O bond distances ranging from 1.50–1.62 Å. There are twenty-four inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the second O2- site, O2- is bonded in a bent 120 degrees geometry to one Fe3+ and one P5+ atom. In the third O2- site, O2- is bonded in a 2-coordinate geometry to one Li1+, one Fe3+, and one P5+ atom. In the fourth O2- site, O2- is bonded in a distorted linear geometry to one Fe3+ and one P5+ atom. In the fifth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Fe3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 120 degrees geometry to two P5+ atoms. In the seventh O2- site, O2- is bonded in a linear geometry to one Fe3+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a distorted trigonal planar geometry to two equivalent Fe3+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a 3-coordinate geometry to two equivalent Fe3+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a distorted trigonal planar geometry to two Fe3+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the fourteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the fifteenth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two P5+ atoms. In the sixteenth O2- site, O2- is bonded in a bent 120 degrees geometry to two P5+ atoms. In the seventeenth O2- site, O2- is bonded in a distorted linear geometry to one Fe3+ and one P5+ atom. In the eighteenth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the nineteenth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the twentieth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the twenty-first O2- site, O2- is bonded in a 3-coordinate geometry to two Fe3+ and one P5+ atom. In the twenty-second O2- site, O2- is bonded in a 2-coordinate geometry to one Li1+, one Fe3+, and one P5+ atom. In the twenty-third O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Fe3+, and one P5+ atom. In the twenty-fourth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two P5+ atoms.« less

Authors:
Publication Date:
Other Number(s):
mp-697800
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Collaborations:
MIT; UC Berkeley; Duke; U Louvain
Subject:
36 MATERIALS SCIENCE
Keywords:
crystal structure; LiFe4P7O24; Fe-Li-O-P
OSTI Identifier:
1285215
DOI:
https://doi.org/10.17188/1285215

Citation Formats

The Materials Project. Materials Data on LiFe4P7O24 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1285215.
The Materials Project. Materials Data on LiFe4P7O24 by Materials Project. United States. doi:https://doi.org/10.17188/1285215
The Materials Project. 2020. "Materials Data on LiFe4P7O24 by Materials Project". United States. doi:https://doi.org/10.17188/1285215. https://www.osti.gov/servlets/purl/1285215. Pub date:Mon Aug 03 00:00:00 EDT 2020
@article{osti_1285215,
title = {Materials Data on LiFe4P7O24 by Materials Project},
author = {The Materials Project},
abstractNote = {LiFe4P7O24 crystallizes in the triclinic P-1 space group. The structure is three-dimensional. Li1+ is bonded in a 1-coordinate geometry to three O2- atoms. There are a spread of Li–O bond distances ranging from 2.67–2.81 Å. There are four inequivalent Fe3+ sites. In the first Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 1.91–2.19 Å. In the second Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 1.93–2.19 Å. In the third Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 1.95–2.20 Å. In the fourth Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 1.96–2.13 Å. There are seven inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three FeO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 36–46°. There are a spread of P–O bond distances ranging from 1.52–1.64 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three FeO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 16–55°. There are a spread of P–O bond distances ranging from 1.51–1.65 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 17–60°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with five FeO6 octahedra. The corner-sharing octahedra tilt angles range from 18–57°. There are a spread of P–O bond distances ranging from 1.53–1.58 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 9–54°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three FeO6 octahedra and corners with two PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 23–54°. There are a spread of P–O bond distances ranging from 1.49–1.61 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two FeO6 octahedra and corners with two PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 28–39°. There are a spread of P–O bond distances ranging from 1.50–1.62 Å. There are twenty-four inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the second O2- site, O2- is bonded in a bent 120 degrees geometry to one Fe3+ and one P5+ atom. In the third O2- site, O2- is bonded in a 2-coordinate geometry to one Li1+, one Fe3+, and one P5+ atom. In the fourth O2- site, O2- is bonded in a distorted linear geometry to one Fe3+ and one P5+ atom. In the fifth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Fe3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 120 degrees geometry to two P5+ atoms. In the seventh O2- site, O2- is bonded in a linear geometry to one Fe3+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a distorted trigonal planar geometry to two equivalent Fe3+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a 3-coordinate geometry to two equivalent Fe3+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a distorted trigonal planar geometry to two Fe3+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the fourteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the fifteenth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two P5+ atoms. In the sixteenth O2- site, O2- is bonded in a bent 120 degrees geometry to two P5+ atoms. In the seventeenth O2- site, O2- is bonded in a distorted linear geometry to one Fe3+ and one P5+ atom. In the eighteenth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the nineteenth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the twentieth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the twenty-first O2- site, O2- is bonded in a 3-coordinate geometry to two Fe3+ and one P5+ atom. In the twenty-second O2- site, O2- is bonded in a 2-coordinate geometry to one Li1+, one Fe3+, and one P5+ atom. In the twenty-third O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Fe3+, and one P5+ atom. In the twenty-fourth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two P5+ atoms.},
doi = {10.17188/1285215},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Aug 03 00:00:00 EDT 2020},
month = {Mon Aug 03 00:00:00 EDT 2020}
}